预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)

本文主要是介绍预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四十八篇 预测-修正法

预测-校正方法是使用先前几个已知点的信息来计算下一个点,如下图所示。
这种方法的一个缺点是,他们需要一些已知信息,可能需要一步法来生成一些点才能开始,详情可见常微分方程的一步法求解。而这些方法的优点在于,为了预测下一个点,能够有效地利用现有的信息。这与四阶龙格-库塔法相反,例如,在每一步中,需要计算四个函数,预测-修正法将不会这么麻烦。
预测-校正方法利用两个公式;根据现有数据以估计下一个点的预测公式,以及改进此估计的校正公式。
在这里插入图片描述
可以反复应用校正公式,直到满足某一收敛准则;但是,本篇中描述的任何方法都没有实现此选项。
预测公式通过在y ‘- x曲线下使用xi, xi−1,xi−2等样本点积分来估计yi+1的新值。任何不需要对yi+1进行先验估计的数值积分公式都适合作为预测器使用。
修正公式改进了预测值yi+1,再次在y ‘-x曲线下积分,但这次使用了样本点xi+1, xi, xi−1等。校正公式能够在xi+1处取样,因为从预测阶段可以得到y’i+1的值。任何需要对y’i+1进行先验估计的数值积分公式都适合用作校正器。
之前描述的修正欧拉方法是一种预测-校正器。给出一个标准形式的一阶微分方程,y’ = f(x, y), y(x0) = y0,该方法从Euler方法开始,这是一个使用矩形规则的预测器
在这里插入图片描述
接下来是一个使用梯形法则的校正器
在这里插入图片描述
注意,预测器不需要预估y’i+1,而校正器需要。
然而,最著名的预测-校正方法使用的公式在算法的两个部分具有相同的精度。如上所示,这是一种简便的方法可以根据预测项和修正项之间的差异来估计修正项的误差。

米尔恩-辛普森方法

这种方法使用米尔恩的公式作为预测器,用辛普森法则作为校正器。该方法是四阶的,即预测器和校正器的主要误差项都包含h5,并且需要4个初始值y来开始。注意,与预测量相比,与校正量公式相关的误差项较小,这是意料之中的,因为预测量涉及的外推过程不那么精确。
给出一个具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1和y(xi) = yi的一阶微分方程y’ = f(x, y),该方法从米尔恩预测器开始
在这里插入图片描述
接着是辛普森的校正者
在这里插入图片描述
米尔恩预测器使用下图所示积分的三个样本点,在xi−3和xi+1之间对y’- x曲线进行积分。
在这里插入图片描述

计算实例

已知y ’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用米尔恩-辛普森预测-校正方法估计y(0.2)
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器。
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4945) = 3.0689,并应用校正器。
在这里插入图片描述
这种情况下精确到小数点后四位的的精确解是y(0.2) = 1.4977。
使用米尔恩的方法,或者任何使用辛普森法则作为校正器的方法的一个不利是,在计算的一个阶段产生的误差随后可能会增大。由于这个原因,其他的四阶方法,比如下面描述的方法,往往是更受欢迎的。

Adams-Bashforth-Moulton方法

一种更稳定的四阶方法是基于Adams- bashforth预测器和Adams Moulton校正器,在这种方法中误差不会快速增长。
给定一个一阶微分方程,y’ = f(x, y)具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1,y(xi) = yi = yi,该方法从Adams-Bashforth的预测器开始
在这里插入图片描述
接下来是亚当斯-莫尔顿的校正器
在这里插入图片描述
adam - bashforth - moulton方法有比Milne Simpson更大的误差项,尽管主要的误差项仍然表明校正器比预测器更准确。
稳定性的取得,要以一些额外的工作为代价,因为这两个公式需要四个样本点,而不是Milne-Simpson方法中的三个。如下图所示,Adams-Bashforth Predictor使用4个样本点在y’ -x曲线下xi和xi+1的界限之间进行积分。亚当斯-莫尔顿校正器是类似的,但样本点向右移动了一个。
在这里插入图片描述

计算实例

已知y’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用Adams-Bashforth-Moulton预测-校正器方法估计y(0.2)。
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器公式
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4941) = 3.0682,并应用校正器公式。
在这里插入图片描述
这种情况下精确到小数点后四位的精确解是y(0.2) = 1.4977。

程序如下

#线性常微分方程的theta法
import numpy as np
itype=2;nsteps=5;h=-0.05
x=np.zeros((5))
y=np.zeros((5))
x[0:4]=(1.00,0.95,0.90,0.85);y[0:4]=(3.61623,2.99272,2.55325,2.22755)
def f73(x,y):f73=x*y**2+2.0*x**2return f73 
if itype==1:print('**Milne-Simpson 4阶P-C法**')print('x          y    Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[0]+4.0*h/3.0*(2.0*f73(x[1],y[1])-f73(x[2],y[2])+2.0*f73(x[3],y[3]))y[4]=y[2]+h/3.0*(f73(x[2],y[2])+4.0*f73(x[3],y[3])+f73(x[4],y1))e=-(y[4]-y4)/29print(x[4],y[4],e)y[0:4]=y[1:5];x[0:4]=x[1:5]
elif itype==2:print('**Adams-Bashforth-Moulton4阶P-C法**')print('    x           y          Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[3]+h/24.0*(-9.0*f73(x[0],y[0])+37.0*f73(x[1],y[1])-59.0*f73(x[2],y[2])+55.0*f73(x[3],y[3]))y[4]=y[3]+h/24.0*(f73(x[1],y[1])-5.0*f73(x[2],y[2])+19.0*f73(x[3],y[3])+9.0*f73(x[4],y4))e=-(y[4]-y4)/14print('{:9.5e}'.format(x[4]),end='  ')print('{:9.5e}'.format(y[4]),end='  ')print('{:9.5e}'.format(e))y[0:4]=y[1:5];x[0:4]=x[1:5]

终端输出结果如下
在这里插入图片描述

这篇关于预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298542

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应