预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)

本文主要是介绍预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四十八篇 预测-修正法

预测-校正方法是使用先前几个已知点的信息来计算下一个点,如下图所示。
这种方法的一个缺点是,他们需要一些已知信息,可能需要一步法来生成一些点才能开始,详情可见常微分方程的一步法求解。而这些方法的优点在于,为了预测下一个点,能够有效地利用现有的信息。这与四阶龙格-库塔法相反,例如,在每一步中,需要计算四个函数,预测-修正法将不会这么麻烦。
预测-校正方法利用两个公式;根据现有数据以估计下一个点的预测公式,以及改进此估计的校正公式。
在这里插入图片描述
可以反复应用校正公式,直到满足某一收敛准则;但是,本篇中描述的任何方法都没有实现此选项。
预测公式通过在y ‘- x曲线下使用xi, xi−1,xi−2等样本点积分来估计yi+1的新值。任何不需要对yi+1进行先验估计的数值积分公式都适合作为预测器使用。
修正公式改进了预测值yi+1,再次在y ‘-x曲线下积分,但这次使用了样本点xi+1, xi, xi−1等。校正公式能够在xi+1处取样,因为从预测阶段可以得到y’i+1的值。任何需要对y’i+1进行先验估计的数值积分公式都适合用作校正器。
之前描述的修正欧拉方法是一种预测-校正器。给出一个标准形式的一阶微分方程,y’ = f(x, y), y(x0) = y0,该方法从Euler方法开始,这是一个使用矩形规则的预测器
在这里插入图片描述
接下来是一个使用梯形法则的校正器
在这里插入图片描述
注意,预测器不需要预估y’i+1,而校正器需要。
然而,最著名的预测-校正方法使用的公式在算法的两个部分具有相同的精度。如上所示,这是一种简便的方法可以根据预测项和修正项之间的差异来估计修正项的误差。

米尔恩-辛普森方法

这种方法使用米尔恩的公式作为预测器,用辛普森法则作为校正器。该方法是四阶的,即预测器和校正器的主要误差项都包含h5,并且需要4个初始值y来开始。注意,与预测量相比,与校正量公式相关的误差项较小,这是意料之中的,因为预测量涉及的外推过程不那么精确。
给出一个具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1和y(xi) = yi的一阶微分方程y’ = f(x, y),该方法从米尔恩预测器开始
在这里插入图片描述
接着是辛普森的校正者
在这里插入图片描述
米尔恩预测器使用下图所示积分的三个样本点,在xi−3和xi+1之间对y’- x曲线进行积分。
在这里插入图片描述

计算实例

已知y ’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用米尔恩-辛普森预测-校正方法估计y(0.2)
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器。
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4945) = 3.0689,并应用校正器。
在这里插入图片描述
这种情况下精确到小数点后四位的的精确解是y(0.2) = 1.4977。
使用米尔恩的方法,或者任何使用辛普森法则作为校正器的方法的一个不利是,在计算的一个阶段产生的误差随后可能会增大。由于这个原因,其他的四阶方法,比如下面描述的方法,往往是更受欢迎的。

Adams-Bashforth-Moulton方法

一种更稳定的四阶方法是基于Adams- bashforth预测器和Adams Moulton校正器,在这种方法中误差不会快速增长。
给定一个一阶微分方程,y’ = f(x, y)具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1,y(xi) = yi = yi,该方法从Adams-Bashforth的预测器开始
在这里插入图片描述
接下来是亚当斯-莫尔顿的校正器
在这里插入图片描述
adam - bashforth - moulton方法有比Milne Simpson更大的误差项,尽管主要的误差项仍然表明校正器比预测器更准确。
稳定性的取得,要以一些额外的工作为代价,因为这两个公式需要四个样本点,而不是Milne-Simpson方法中的三个。如下图所示,Adams-Bashforth Predictor使用4个样本点在y’ -x曲线下xi和xi+1的界限之间进行积分。亚当斯-莫尔顿校正器是类似的,但样本点向右移动了一个。
在这里插入图片描述

计算实例

已知y’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用Adams-Bashforth-Moulton预测-校正器方法估计y(0.2)。
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器公式
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4941) = 3.0682,并应用校正器公式。
在这里插入图片描述
这种情况下精确到小数点后四位的精确解是y(0.2) = 1.4977。

程序如下

#线性常微分方程的theta法
import numpy as np
itype=2;nsteps=5;h=-0.05
x=np.zeros((5))
y=np.zeros((5))
x[0:4]=(1.00,0.95,0.90,0.85);y[0:4]=(3.61623,2.99272,2.55325,2.22755)
def f73(x,y):f73=x*y**2+2.0*x**2return f73 
if itype==1:print('**Milne-Simpson 4阶P-C法**')print('x          y    Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[0]+4.0*h/3.0*(2.0*f73(x[1],y[1])-f73(x[2],y[2])+2.0*f73(x[3],y[3]))y[4]=y[2]+h/3.0*(f73(x[2],y[2])+4.0*f73(x[3],y[3])+f73(x[4],y1))e=-(y[4]-y4)/29print(x[4],y[4],e)y[0:4]=y[1:5];x[0:4]=x[1:5]
elif itype==2:print('**Adams-Bashforth-Moulton4阶P-C法**')print('    x           y          Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[3]+h/24.0*(-9.0*f73(x[0],y[0])+37.0*f73(x[1],y[1])-59.0*f73(x[2],y[2])+55.0*f73(x[3],y[3]))y[4]=y[3]+h/24.0*(f73(x[1],y[1])-5.0*f73(x[2],y[2])+19.0*f73(x[3],y[3])+9.0*f73(x[4],y4))e=-(y[4]-y4)/14print('{:9.5e}'.format(x[4]),end='  ')print('{:9.5e}'.format(y[4]),end='  ')print('{:9.5e}'.format(e))y[0:4]=y[1:5];x[0:4]=x[1:5]

终端输出结果如下
在这里插入图片描述

这篇关于预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298542

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.