预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)

本文主要是介绍预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四十八篇 预测-修正法

预测-校正方法是使用先前几个已知点的信息来计算下一个点,如下图所示。
这种方法的一个缺点是,他们需要一些已知信息,可能需要一步法来生成一些点才能开始,详情可见常微分方程的一步法求解。而这些方法的优点在于,为了预测下一个点,能够有效地利用现有的信息。这与四阶龙格-库塔法相反,例如,在每一步中,需要计算四个函数,预测-修正法将不会这么麻烦。
预测-校正方法利用两个公式;根据现有数据以估计下一个点的预测公式,以及改进此估计的校正公式。
在这里插入图片描述
可以反复应用校正公式,直到满足某一收敛准则;但是,本篇中描述的任何方法都没有实现此选项。
预测公式通过在y ‘- x曲线下使用xi, xi−1,xi−2等样本点积分来估计yi+1的新值。任何不需要对yi+1进行先验估计的数值积分公式都适合作为预测器使用。
修正公式改进了预测值yi+1,再次在y ‘-x曲线下积分,但这次使用了样本点xi+1, xi, xi−1等。校正公式能够在xi+1处取样,因为从预测阶段可以得到y’i+1的值。任何需要对y’i+1进行先验估计的数值积分公式都适合用作校正器。
之前描述的修正欧拉方法是一种预测-校正器。给出一个标准形式的一阶微分方程,y’ = f(x, y), y(x0) = y0,该方法从Euler方法开始,这是一个使用矩形规则的预测器
在这里插入图片描述
接下来是一个使用梯形法则的校正器
在这里插入图片描述
注意,预测器不需要预估y’i+1,而校正器需要。
然而,最著名的预测-校正方法使用的公式在算法的两个部分具有相同的精度。如上所示,这是一种简便的方法可以根据预测项和修正项之间的差异来估计修正项的误差。

米尔恩-辛普森方法

这种方法使用米尔恩的公式作为预测器,用辛普森法则作为校正器。该方法是四阶的,即预测器和校正器的主要误差项都包含h5,并且需要4个初始值y来开始。注意,与预测量相比,与校正量公式相关的误差项较小,这是意料之中的,因为预测量涉及的外推过程不那么精确。
给出一个具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1和y(xi) = yi的一阶微分方程y’ = f(x, y),该方法从米尔恩预测器开始
在这里插入图片描述
接着是辛普森的校正者
在这里插入图片描述
米尔恩预测器使用下图所示积分的三个样本点,在xi−3和xi+1之间对y’- x曲线进行积分。
在这里插入图片描述

计算实例

已知y ’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用米尔恩-辛普森预测-校正方法估计y(0.2)
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器。
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4945) = 3.0689,并应用校正器。
在这里插入图片描述
这种情况下精确到小数点后四位的的精确解是y(0.2) = 1.4977。
使用米尔恩的方法,或者任何使用辛普森法则作为校正器的方法的一个不利是,在计算的一个阶段产生的误差随后可能会增大。由于这个原因,其他的四阶方法,比如下面描述的方法,往往是更受欢迎的。

Adams-Bashforth-Moulton方法

一种更稳定的四阶方法是基于Adams- bashforth预测器和Adams Moulton校正器,在这种方法中误差不会快速增长。
给定一个一阶微分方程,y’ = f(x, y)具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1,y(xi) = yi = yi,该方法从Adams-Bashforth的预测器开始
在这里插入图片描述
接下来是亚当斯-莫尔顿的校正器
在这里插入图片描述
adam - bashforth - moulton方法有比Milne Simpson更大的误差项,尽管主要的误差项仍然表明校正器比预测器更准确。
稳定性的取得,要以一些额外的工作为代价,因为这两个公式需要四个样本点,而不是Milne-Simpson方法中的三个。如下图所示,Adams-Bashforth Predictor使用4个样本点在y’ -x曲线下xi和xi+1的界限之间进行积分。亚当斯-莫尔顿校正器是类似的,但样本点向右移动了一个。
在这里插入图片描述

计算实例

已知y’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用Adams-Bashforth-Moulton预测-校正器方法估计y(0.2)。
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器公式
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4941) = 3.0682,并应用校正器公式。
在这里插入图片描述
这种情况下精确到小数点后四位的精确解是y(0.2) = 1.4977。

程序如下

#线性常微分方程的theta法
import numpy as np
itype=2;nsteps=5;h=-0.05
x=np.zeros((5))
y=np.zeros((5))
x[0:4]=(1.00,0.95,0.90,0.85);y[0:4]=(3.61623,2.99272,2.55325,2.22755)
def f73(x,y):f73=x*y**2+2.0*x**2return f73 
if itype==1:print('**Milne-Simpson 4阶P-C法**')print('x          y    Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[0]+4.0*h/3.0*(2.0*f73(x[1],y[1])-f73(x[2],y[2])+2.0*f73(x[3],y[3]))y[4]=y[2]+h/3.0*(f73(x[2],y[2])+4.0*f73(x[3],y[3])+f73(x[4],y1))e=-(y[4]-y4)/29print(x[4],y[4],e)y[0:4]=y[1:5];x[0:4]=x[1:5]
elif itype==2:print('**Adams-Bashforth-Moulton4阶P-C法**')print('    x           y          Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[3]+h/24.0*(-9.0*f73(x[0],y[0])+37.0*f73(x[1],y[1])-59.0*f73(x[2],y[2])+55.0*f73(x[3],y[3]))y[4]=y[3]+h/24.0*(f73(x[1],y[1])-5.0*f73(x[2],y[2])+19.0*f73(x[3],y[3])+9.0*f73(x[4],y4))e=-(y[4]-y4)/14print('{:9.5e}'.format(x[4]),end='  ')print('{:9.5e}'.format(y[4]),end='  ')print('{:9.5e}'.format(e))y[0:4]=y[1:5];x[0:4]=x[1:5]

终端输出结果如下
在这里插入图片描述

这篇关于预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298542

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e