预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)

本文主要是介绍预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四十八篇 预测-修正法

预测-校正方法是使用先前几个已知点的信息来计算下一个点,如下图所示。
这种方法的一个缺点是,他们需要一些已知信息,可能需要一步法来生成一些点才能开始,详情可见常微分方程的一步法求解。而这些方法的优点在于,为了预测下一个点,能够有效地利用现有的信息。这与四阶龙格-库塔法相反,例如,在每一步中,需要计算四个函数,预测-修正法将不会这么麻烦。
预测-校正方法利用两个公式;根据现有数据以估计下一个点的预测公式,以及改进此估计的校正公式。
在这里插入图片描述
可以反复应用校正公式,直到满足某一收敛准则;但是,本篇中描述的任何方法都没有实现此选项。
预测公式通过在y ‘- x曲线下使用xi, xi−1,xi−2等样本点积分来估计yi+1的新值。任何不需要对yi+1进行先验估计的数值积分公式都适合作为预测器使用。
修正公式改进了预测值yi+1,再次在y ‘-x曲线下积分,但这次使用了样本点xi+1, xi, xi−1等。校正公式能够在xi+1处取样,因为从预测阶段可以得到y’i+1的值。任何需要对y’i+1进行先验估计的数值积分公式都适合用作校正器。
之前描述的修正欧拉方法是一种预测-校正器。给出一个标准形式的一阶微分方程,y’ = f(x, y), y(x0) = y0,该方法从Euler方法开始,这是一个使用矩形规则的预测器
在这里插入图片描述
接下来是一个使用梯形法则的校正器
在这里插入图片描述
注意,预测器不需要预估y’i+1,而校正器需要。
然而,最著名的预测-校正方法使用的公式在算法的两个部分具有相同的精度。如上所示,这是一种简便的方法可以根据预测项和修正项之间的差异来估计修正项的误差。

米尔恩-辛普森方法

这种方法使用米尔恩的公式作为预测器,用辛普森法则作为校正器。该方法是四阶的,即预测器和校正器的主要误差项都包含h5,并且需要4个初始值y来开始。注意,与预测量相比,与校正量公式相关的误差项较小,这是意料之中的,因为预测量涉及的外推过程不那么精确。
给出一个具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1和y(xi) = yi的一阶微分方程y’ = f(x, y),该方法从米尔恩预测器开始
在这里插入图片描述
接着是辛普森的校正者
在这里插入图片描述
米尔恩预测器使用下图所示积分的三个样本点,在xi−3和xi+1之间对y’- x曲线进行积分。
在这里插入图片描述

计算实例

已知y ’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用米尔恩-辛普森预测-校正方法估计y(0.2)
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器。
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4945) = 3.0689,并应用校正器。
在这里插入图片描述
这种情况下精确到小数点后四位的的精确解是y(0.2) = 1.4977。
使用米尔恩的方法,或者任何使用辛普森法则作为校正器的方法的一个不利是,在计算的一个阶段产生的误差随后可能会增大。由于这个原因,其他的四阶方法,比如下面描述的方法,往往是更受欢迎的。

Adams-Bashforth-Moulton方法

一种更稳定的四阶方法是基于Adams- bashforth预测器和Adams Moulton校正器,在这种方法中误差不会快速增长。
给定一个一阶微分方程,y’ = f(x, y)具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1,y(xi) = yi = yi,该方法从Adams-Bashforth的预测器开始
在这里插入图片描述
接下来是亚当斯-莫尔顿的校正器
在这里插入图片描述
adam - bashforth - moulton方法有比Milne Simpson更大的误差项,尽管主要的误差项仍然表明校正器比预测器更准确。
稳定性的取得,要以一些额外的工作为代价,因为这两个公式需要四个样本点,而不是Milne-Simpson方法中的三个。如下图所示,Adams-Bashforth Predictor使用4个样本点在y’ -x曲线下xi和xi+1的界限之间进行积分。亚当斯-莫尔顿校正器是类似的,但样本点向右移动了一个。
在这里插入图片描述

计算实例

已知y’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用Adams-Bashforth-Moulton预测-校正器方法估计y(0.2)。
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器公式
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4941) = 3.0682,并应用校正器公式。
在这里插入图片描述
这种情况下精确到小数点后四位的精确解是y(0.2) = 1.4977。

程序如下

#线性常微分方程的theta法
import numpy as np
itype=2;nsteps=5;h=-0.05
x=np.zeros((5))
y=np.zeros((5))
x[0:4]=(1.00,0.95,0.90,0.85);y[0:4]=(3.61623,2.99272,2.55325,2.22755)
def f73(x,y):f73=x*y**2+2.0*x**2return f73 
if itype==1:print('**Milne-Simpson 4阶P-C法**')print('x          y    Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[0]+4.0*h/3.0*(2.0*f73(x[1],y[1])-f73(x[2],y[2])+2.0*f73(x[3],y[3]))y[4]=y[2]+h/3.0*(f73(x[2],y[2])+4.0*f73(x[3],y[3])+f73(x[4],y1))e=-(y[4]-y4)/29print(x[4],y[4],e)y[0:4]=y[1:5];x[0:4]=x[1:5]
elif itype==2:print('**Adams-Bashforth-Moulton4阶P-C法**')print('    x           y          Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[3]+h/24.0*(-9.0*f73(x[0],y[0])+37.0*f73(x[1],y[1])-59.0*f73(x[2],y[2])+55.0*f73(x[3],y[3]))y[4]=y[3]+h/24.0*(f73(x[1],y[1])-5.0*f73(x[2],y[2])+19.0*f73(x[3],y[3])+9.0*f73(x[4],y4))e=-(y[4]-y4)/14print('{:9.5e}'.format(x[4]),end='  ')print('{:9.5e}'.format(y[4]),end='  ')print('{:9.5e}'.format(e))y[0:4]=y[1:5];x[0:4]=x[1:5]

终端输出结果如下
在这里插入图片描述

这篇关于预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298542

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交