838. 堆排序,

2023-10-29 05:20
文章标签 堆排序 838

本文主要是介绍838. 堆排序,,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全二叉树手写小根堆

堆排序的五大功能
1.插入一个数
2.求集合当中的最小值
3.删除最小值
4.删除任意一个元素
5.修改任意一个元素
最后两个功能stl中的堆即优先队列都没法直接实现


输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。

输入格式

第一行包含整数 n 和 m。

第二行包含 n 个整数,表示整数数列。

输出格式

共一行,包含 m 个整数,表示整数数列中前 m 小的数。

数据范围

1≤m≤n≤105,
1≤数列中元素≤109

输入样例:
5 3
4 5 1 3 2
输出样例:
1 2 3

 解析:

此代码的第一次排序时间复杂的为 O(n)

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>using namespace std;
typedef long long LL;
const int N = 1e5 + 5, M = 3e5 + 5;
int n, m;
int h[N],cnt;void down(int u) {int t = u;if (u * 2 <= cnt && h[2 * u] < h[t])t = 2 * u;if (2 * u + 1 <= cnt && h[2 * u + 1] < h[t])t = 2 * u + 1;if (u != t) {swap(h[t], h[u]);down(t);}
}int main() {cin >> n >> m;for (int i = 1; i <= n; i++)scanf("%d", &h[i]);cnt = n;for (int i = n / 2; i; i--)down(i);//时间复杂度为 O(n)while (m--) {printf("%d ", h[1]);h[1] = h[cnt];cnt--;down(1);}return 0;
}

这篇关于838. 堆排序,的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298499

相关文章

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

优先队列与堆排序

PriorityQueue 优先级队列中的元素可以按照任意的顺序插入,却总是按照排序的顺序进行检索。无论何时调用remove方法,总会获得当前优先级队列中的最小元素(其实是返回堆顶元素),但并不是对所有元素都排序。它是采用了堆(一个可以自我调整的二叉树),执行增加删除操作后,可以让最小元素移动到根。 堆排序复习 package com.jefflee;import java.util.Arr

6.2排序——选择排序与堆排序

本篇博客梳理选择排序,包括直接选择排序与堆排序 排序全部默认排成升序 一、直接选择排序 1.算法思想 每次遍历都选出最小的和最大的,放到序列最前面/最后面 2.具体操作 (1)单趟 每次遍历都选出最小的和最大的。遍历时,遇到更小的,更新min,遇到更大的,更新max (2)单趟变整体 每趟遍历完之后,begin++,end– 程序结构如下 while(begin<end){//

堆与堆排序之初见

堆(本文只提二叉堆,当然也有多叉堆)作为一种数据结构,是一个数组,可以被看成是一个近似的完全二叉树,树上的每一个节点对应数组中的一个元素,并且除了最底层节点外,该树是完全充满的,而且是从左向右依次填充。 我们目前经常听到的名词“堆”已经被引申为“垃圾收集存储机制”,但本文提及的“堆”指的是堆数据结构。 为了后续描述方便,我们定义堆的数组为H,用H.length表示堆数组的大小,用H.size表示堆

leetcode解题思路分析(九十六)832 - 838 题

翻转图像 给定一个二进制矩阵 A,我们想先水平翻转图像,然后反转图像并返回结果。水平翻转图片就是将图片的每一行都进行翻转,即逆序。例如,水平翻转 [1, 1, 0] 的结果是 [0, 1, 1]。反转图片的意思是图片中的 0 全部被 1 替换, 1 全部被 0 替换。例如,反转 [0, 1, 1] 的结果是 [1, 0, 0]。 在一次遍历中,即进行逆序也进行值的反转,用双指针完成任务 cla

堆排序算法剖析(基于Java)

什么是堆结构? 堆排序的关键是构造堆结构,首先谈一下堆结构的定义,堆结构是一种树结构,准确地说是一个完全二叉树,完全二叉树的定义在这里就不多赘述了,百度知道。 按照排序顺序,堆结构可以分为两种: 1.按照从小到大的顺序排序,要求非叶节点的数据要大于或等于其左、右子节点的数据。 2.按照从大到小的顺序排序,要求非叶节点的数据要小于或等于其左、右子节点的数据。 本文以从小到大的顺序为例进行介

排序算法(动图详细讲解)(直接插入排序,希尔排序,堆排序,冒泡排序)

前言:         排序的方式有很多种,不同的排序思想是不一样的。         但是排序的时间复杂度和空间复杂度也都有区别。         例如:         最简单的冒泡排序,时间复杂度为O(N)         对排序的时间复杂度为O(N*logN)。 接下来就来仔细分析每种排序的思路,并写出代码。 插入排序:  基本思想:         直接插入排序是一种简

堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

堆的建立、插入、出堆、堆化、topk问题、堆排序 使用数组来存储堆 堆顶为序号0,堆底为序号 size - 1 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达 // 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。void initHeap(float **arr, int *size) { *arr = (float *)malloc

内部排序之三:堆排序

前言    堆排序、快速排序、归并排序(下篇会写这两种排序算法)的平均时间复杂度都为O(n*logn)。要弄清楚堆排序,就要先了解下二叉堆这种数据结构。本文不打算完全讲述二叉堆的所有操作,而是着重讲述堆排序中要用到的操作。比如我们建堆的时候可以采用堆的插入操作(将元素插入到适当的位置,使新的序列仍符合堆的定义)将元素一个一个地插入到堆中,但其实我们完全没必要这么做,我们有执行操作更少的方法,

算法-排序算法:堆排序(HeapSort )【O(nlogn)】

MyArray.java /*** 数组** @author* @version 2018/8/4*/public class MyArray<E> {private E[] arr;private int size;public MyArray(int capacity){arr = (E[])new Object[capacity];size = 0;}public MyArray() {