Kmeans算法的K值选择技巧【Elbow Method + Silhouette Score Method】

2023-10-29 04:12

本文主要是介绍Kmeans算法的K值选择技巧【Elbow Method + Silhouette Score Method】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、方法简述
  • 二、使用到的数据集
  • 三、代码实现
  • 四、结论


一、方法简述

在Kmeans算法中最终聚类数量K的选择主要通过两个方法综合判断:

  1. Elbow Method
    这是一种绘制k值范围的平方和的方法。如果此图看起来像一只手臂,则k是选择的类似肘部的值。从这个肘值开始,平方和(惯性)开始以线性方式减小,因此被认为是最佳值。
    在这里插入图片描述
    上图的最佳K值为3

  2. Silhouette Score Method
    这是一种根据数据点与彼此相似的其他数据点的聚类程度来评估聚类质量的方法。使用距离公式计算该分数,并且选择具有最高分数的k值用于建模。
    具体来说,Silhouette Score 是一种衡量聚类结果质量的指标,它结合了聚类内部的紧密度和不同簇之间的分离度。对于每个数据点,Silhouette Score 考虑了以下几个因素:
      1.紧密度:数据点到同簇其他点的平均距离
      2.分离度:数据点到最近不同簇的平均距离
    设紧密度为a,分离度为b,Silhouette Score 计算公式为 ( b − a ) / m a x ( a , b ) (b - a) / max(a, b) (ba)/max(a,b)。该值的范围在 -1 到 1 之间,越接近 1 表示数据点聚类得越好,越接近 -1 则表示聚类结果较差。
    在这里插入图片描述
    上图的最佳值为2,3,4

综合两种方法进行判断后,K值选3较为合适


二、使用到的数据集

  • 用到的数据集:
    各国发展水平统计信息↓
    https://download.csdn.net/download/weixin_43721000/88480791
  • 字段解释:
    country : 国名
    child_mort : 每1000个婴儿的5年死亡率
    exports : 人均商品和服务出口,以人均国内生产总值的百分比给出
    health : 人均卫生支出总额,以人均国内生产总值的百分比给出
    imports : 人均商品和服务进口,以人均国内生产总值的百分比给出
    Income : 人均净收入
    Inflation : 国内生产总值年增长率的测算(通货膨胀率)
    life_expec : 如果按照目前的死亡率模式,新生儿的平均寿命是多少年
    total_fer : 如果目前的年龄生育率保持不变,每个妇女生育的孩子数量
    gdpp : 人均国内生产总值,计算方法是国内生产总值除以总人口
  • 任务类型:
    对所有国家发展水平聚类,确定待援助国家,涵盖算法:K-Means、DBSCAN、Hierarchical

三、代码实现

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
pd.options.display.float_format = '{:.2f}'.format
import warnings
warnings.filterwarnings('ignore')from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import MinMaxScaler, StandardScalerdef show_elbow_and_silhouette_score(data_values):'''1.计算Elbow Method2.计算Silhouette Score Method3.绘图:return:'''sse = {}sil = []kmax = 10fig = plt.subplots(nrows=1, ncols=2, figsize=(20, 5))# Elbow Method :plt.subplot(1, 2, 1)for k in range(1, 10):kmeans = KMeans(n_clusters=k, max_iter=1000).fit(data_values)sse[k] = kmeans.inertia_  # Inertia: Sum of distances of samples to their closest cluster centersns.lineplot(x=list(sse.keys()), y=list(sse.values()))plt.title('Elbow Method')plt.xlabel("k : Number of cluster")plt.ylabel("Sum of Squared Error")plt.grid()# Silhouette Score Methodplt.subplot(1, 2, 2)for k in range(2, kmax + 1):kmeans = KMeans(n_clusters=k).fit(data_values)labels = kmeans.labels_sil.append(silhouette_score(data_values, labels, metric='euclidean'))sns.lineplot(x=range(2, kmax + 1), y=sil)plt.title('Silhouette Score Method')plt.xlabel("k : Number of cluster")plt.ylabel("Silhouette Score")plt.grid()plt.show()if __name__ == '__main__':# 读取数据data = pd.read_csv('./data/Country-data.csv')print(data.head())#                country  child_mort  exports  ...  life_expec  total_fer   gdpp# 0          Afghanistan       90.20    10.00  ...       56.20       5.82    553# 1              Albania       16.60    28.00  ...       76.30       1.65   4090# 2              Algeria       27.30    38.40  ...       76.50       2.89   4460# 3               Angola      119.00    62.30  ...       60.10       6.16   3530# 4  Antigua and Barbuda       10.30    45.50  ...       76.80       2.13  12200# 数据降维# 将较为细分的领域数据合并# health <== child_mort, health, life_expec, total_fer# trade <== imports, exports# finance <== income, inflation, gdpp# 最终由9个维度降至3维df = pd.DataFrame()df['Health'] = (data['child_mort'] / data['child_mort'].mean()) + (data['health'] / data['health'].mean()) + (data['life_expec'] / data['life_expec'].mean()) + (data['total_fer'] / data['total_fer'].mean())df['Trade'] = (data['imports'] / data['imports'].mean()) + (data['exports'] / data['exports'].mean())df['Finance'] = (data['income'] / data['income'].mean()) + (data['inflation'] / data['inflation'].mean()) + (data['gdpp'] / data['gdpp'].mean())print(df.head())#    Health  Trade  Finance# 0    6.24   1.20     1.35# 1    3.04   1.72     1.47# 2    3.39   1.60     3.17# 3    6.47   2.43     3.49# 4    2.96   2.36     2.24# 数据归一化mms = MinMaxScaler()  # Normalization# ss = StandardScaler()  # Standardizationdf['Health'] = mms.fit_transform(df[['Health']])df['Trade'] = mms.fit_transform(df[['Trade']])df['Finance'] = mms.fit_transform(df[['Finance']])df.insert(loc=0, value=list(data['country']), column='Country')print(df.head())#                Country  Health  Trade  Finance# 0          Afghanistan    0.63   0.14     0.08# 1              Albania    0.13   0.20     0.09# 2              Algeria    0.18   0.19     0.21# 3               Angola    0.66   0.28     0.24# 4  Antigua and Barbuda    0.12   0.28     0.15# 取出归一化之后的各项特征张量data_values = df.drop(columns=['Country']).values  # Feature Combination : Health - Trade - Financeprint(data_values)# [[0.6257404  0.13961443 0.07981958]#  [0.12745148 0.19990106 0.08875623]#  [0.18248518 0.18662177 0.2128085 ]#  [0.66138147 0.28305774 0.23694587]#      ...       ...        ...#  [0.17006974 0.40338563 0.12143593]#  [0.39745068 0.17024776 0.22963179]#  [0.52690852 0.18140481 0.13499709]]# 聚类并绘制 elbow 和 silhouette_score 方法的图像show_elbow_and_silhouette_score(data_values)

在这里插入图片描述


四、结论

  1. Elbow Method 显示肘部位置 K=3
  2. Silhouette Score Method 显示的较高分数在 K=2,3 时表现较好
  3. 综合两个方法最终确认 K的选值为 3

这篇关于Kmeans算法的K值选择技巧【Elbow Method + Silhouette Score Method】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298182

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO