基于Or-Tools的指派问题建模求解(PythonAPI)

2023-10-29 01:44

本文主要是介绍基于Or-Tools的指派问题建模求解(PythonAPI),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Or-Tools的指派问题建模求解(PythonAPI)

  • 指派问题(又称为分配问题,assignment problem)
  • 基于Or-Tools的指派问题建模求解(PythonAPI)
    • 导入pywraplp库
    • 数据准备
    • 声明MIP求解器
    • 初始化决策变量
    • 初始化约束条件
    • 目标函数
    • 调用求解器
    • 打印结果
    • 求解结果
    • 完整代码

指派问题(又称为分配问题,assignment problem)

指派问题(又称为分配问题,assignment problem)可以抽象概括为:将n个任务(或物品)分配给m个员工(或背包)的问题。其中,最简单的平衡指派模型是指任务数量和员工数量相等的情形。然而,现实生活中的问题大多是任务数量大于员工数量且员工能力有限的广义指派问题(generalized assignment problem,GAP)。GAP是经典的组合优化问题,许多领域的容量约束问题都可以被抽象为GAP进行求解,如机器调度问题、有容量约束的设施选址问题、供应链问题及车辆路径问题等。

广义指派模型
GAP问题可以描述为:将n个相互独立的任务分配给m个员工,一个任务智能由一个员工来完成,一个员工可以完成多项任务,但员工完成任务的总时间不得超过给定限制。

对于 i = 1 , . . . , m i=1,...,m i=1,...,m j = 1 , . . . , n j=1,...,n j=1,...,n,定义0-1决策变量x_ij=1,表示任务j分配给员工i。令 I = { i ∣ i = 1 , ⋯ , m } I=\{i | i=1,\cdots,m\} I={ii=1,,m}为员工集合, J = { j ∣ j = 1 , ⋯ , n } J=\{j | j=1, \cdots, n\} J={jj=1,,n}为任务集合, b i b_i bi表示员工自身的工作时长限制, r i j r_{ij} rij表示员工 i i i完成任务 j j j需要的时长, c i j c_{ij} cij表示员工 i i i完成任务 j j j所消耗的资源或产生的收益。最终目标函数为成本最小或收益最大,则GAP可表述为
max ⁡ 或 min ⁡ ∑ i ∈ I ∑ j ∈ J c i j x i j \begin{align} \max 或 \,\min \sum_{i \in I} \sum_{j \in J} c_{ij}x_{ij} \end{align} maxminiIjJcijxij s . t . s.t. s.t.
∑ j ∈ J r i j x i j ≤ b i , ∀ i ∈ I ∑ i ∈ I x i j = 1 , ∀ j ∈ J x i j ∈ { 0 , 1 } , ∀ j ∈ J \begin{align} \sum_{j \in J} r_{ij}x_{ij} \leq b_i, \quad \forall i \in I \\ \sum_{i \in I}x_{ij}=1, \quad \forall j \in J \\ x_{ij} \in \{0,1\}, \quad \forall j \in J \end{align} jJrijxijbi,iIiIxij=1,jJxij{0,1},jJ
具有上述形式的整数规划模型被称为广义指派模型。

基于Or-Tools的指派问题建模求解(PythonAPI)

在这个例子中,有5个工人(编号0-4)和4个任务(编号0-3),将工人分配给任务的成本如下表所示:

目标为最小化总成本,约束为每个工人最多完成一个任务,每个任务只能由一个工人完成。这个问题中由于工人数多于任务数,因此有一个工人分不到任务。

导入pywraplp库

from ortools.linear_solver import pywraplp

数据准备

costs = [[90, 80, 75, 70],[35, 85, 55, 65],[125, 95, 90, 95],[45, 110, 95, 115],[50, 100, 90, 100],
]
num_workers = len(costs)  # 工人数量
num_tasks = len(costs[0])  # 任务数量

声明MIP求解器

solver = pywraplp.Solver.CreateSolver("SCIP")

初始化决策变量

x = {}
for i in range(num_workers):for j in range(num_tasks):x[i, j] = solver.IntVar(0, 1, "")

初始化约束条件

# 每个员工至多完成一项任务
for i in range(num_workers):solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)# 每项任务只能由一个员工完成
for j in range(num_tasks):solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)

目标函数

objective_terms = []
for i in range(num_workers):for j in range(num_tasks):objective_terms.append(costs[i][j] * x[i, j])
solver.Minimize(solver.Sum(objective_terms))

调用求解器

status = solver.Solve()

打印结果

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:print(f"Total cost = {solver.Objective().Value()}\n")for i in range(num_workers):for j in range(num_tasks):# Test if x[i,j] is 1 (with tolerance for floating point arithmetic).if x[i, j].solution_value() > 0.5:print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")
else:print("No solution found.")

求解结果

Total cost = 265.0
Worker 0 assigned to task 3. Cost = 70
Worker 1 assigned to task 2. Cost = 55
Worker 2 assigned to task 1. Cost = 95
Worker 3 assigned to task 0. Cost = 45

完整代码

from ortools.linear_solver import pywraplpdef main():# Datacosts = [[90, 80, 75, 70],[35, 85, 55, 65],[125, 95, 90, 95],[45, 110, 95, 115],[50, 100, 90, 100],]num_workers = len(costs)num_tasks = len(costs[0])# Solver# Create the mip solver with the SCIP backend.solver = pywraplp.Solver.CreateSolver("SCIP")if not solver:return# Variables# x[i, j] is an array of 0-1 variables, which will be 1# if worker i is assigned to task j.x = {}for i in range(num_workers):for j in range(num_tasks):x[i, j] = solver.IntVar(0, 1, "")# Constraints# Each worker is assigned to at most 1 task.for i in range(num_workers):solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)# Each task is assigned to exactly one worker.for j in range(num_tasks):solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)# Objectiveobjective_terms = []for i in range(num_workers):for j in range(num_tasks):objective_terms.append(costs[i][j] * x[i, j])solver.Minimize(solver.Sum(objective_terms))# Solvestatus = solver.Solve()# Print solution.if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:print(f"Total cost = {solver.Objective().Value()}\n")for i in range(num_workers):for j in range(num_tasks):# Test if x[i,j] is 1 (with tolerance for floating point arithmetic).if x[i, j].solution_value() > 0.5:print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")else:print("No solution found.")if __name__ == "__main__":main()

这篇关于基于Or-Tools的指派问题建模求解(PythonAPI)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297423

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给