基于Or-Tools的指派问题建模求解(PythonAPI)

2023-10-29 01:44

本文主要是介绍基于Or-Tools的指派问题建模求解(PythonAPI),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Or-Tools的指派问题建模求解(PythonAPI)

  • 指派问题(又称为分配问题,assignment problem)
  • 基于Or-Tools的指派问题建模求解(PythonAPI)
    • 导入pywraplp库
    • 数据准备
    • 声明MIP求解器
    • 初始化决策变量
    • 初始化约束条件
    • 目标函数
    • 调用求解器
    • 打印结果
    • 求解结果
    • 完整代码

指派问题(又称为分配问题,assignment problem)

指派问题(又称为分配问题,assignment problem)可以抽象概括为:将n个任务(或物品)分配给m个员工(或背包)的问题。其中,最简单的平衡指派模型是指任务数量和员工数量相等的情形。然而,现实生活中的问题大多是任务数量大于员工数量且员工能力有限的广义指派问题(generalized assignment problem,GAP)。GAP是经典的组合优化问题,许多领域的容量约束问题都可以被抽象为GAP进行求解,如机器调度问题、有容量约束的设施选址问题、供应链问题及车辆路径问题等。

广义指派模型
GAP问题可以描述为:将n个相互独立的任务分配给m个员工,一个任务智能由一个员工来完成,一个员工可以完成多项任务,但员工完成任务的总时间不得超过给定限制。

对于 i = 1 , . . . , m i=1,...,m i=1,...,m j = 1 , . . . , n j=1,...,n j=1,...,n,定义0-1决策变量x_ij=1,表示任务j分配给员工i。令 I = { i ∣ i = 1 , ⋯ , m } I=\{i | i=1,\cdots,m\} I={ii=1,,m}为员工集合, J = { j ∣ j = 1 , ⋯ , n } J=\{j | j=1, \cdots, n\} J={jj=1,,n}为任务集合, b i b_i bi表示员工自身的工作时长限制, r i j r_{ij} rij表示员工 i i i完成任务 j j j需要的时长, c i j c_{ij} cij表示员工 i i i完成任务 j j j所消耗的资源或产生的收益。最终目标函数为成本最小或收益最大,则GAP可表述为
max ⁡ 或 min ⁡ ∑ i ∈ I ∑ j ∈ J c i j x i j \begin{align} \max 或 \,\min \sum_{i \in I} \sum_{j \in J} c_{ij}x_{ij} \end{align} maxminiIjJcijxij s . t . s.t. s.t.
∑ j ∈ J r i j x i j ≤ b i , ∀ i ∈ I ∑ i ∈ I x i j = 1 , ∀ j ∈ J x i j ∈ { 0 , 1 } , ∀ j ∈ J \begin{align} \sum_{j \in J} r_{ij}x_{ij} \leq b_i, \quad \forall i \in I \\ \sum_{i \in I}x_{ij}=1, \quad \forall j \in J \\ x_{ij} \in \{0,1\}, \quad \forall j \in J \end{align} jJrijxijbi,iIiIxij=1,jJxij{0,1},jJ
具有上述形式的整数规划模型被称为广义指派模型。

基于Or-Tools的指派问题建模求解(PythonAPI)

在这个例子中,有5个工人(编号0-4)和4个任务(编号0-3),将工人分配给任务的成本如下表所示:

目标为最小化总成本,约束为每个工人最多完成一个任务,每个任务只能由一个工人完成。这个问题中由于工人数多于任务数,因此有一个工人分不到任务。

导入pywraplp库

from ortools.linear_solver import pywraplp

数据准备

costs = [[90, 80, 75, 70],[35, 85, 55, 65],[125, 95, 90, 95],[45, 110, 95, 115],[50, 100, 90, 100],
]
num_workers = len(costs)  # 工人数量
num_tasks = len(costs[0])  # 任务数量

声明MIP求解器

solver = pywraplp.Solver.CreateSolver("SCIP")

初始化决策变量

x = {}
for i in range(num_workers):for j in range(num_tasks):x[i, j] = solver.IntVar(0, 1, "")

初始化约束条件

# 每个员工至多完成一项任务
for i in range(num_workers):solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)# 每项任务只能由一个员工完成
for j in range(num_tasks):solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)

目标函数

objective_terms = []
for i in range(num_workers):for j in range(num_tasks):objective_terms.append(costs[i][j] * x[i, j])
solver.Minimize(solver.Sum(objective_terms))

调用求解器

status = solver.Solve()

打印结果

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:print(f"Total cost = {solver.Objective().Value()}\n")for i in range(num_workers):for j in range(num_tasks):# Test if x[i,j] is 1 (with tolerance for floating point arithmetic).if x[i, j].solution_value() > 0.5:print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")
else:print("No solution found.")

求解结果

Total cost = 265.0
Worker 0 assigned to task 3. Cost = 70
Worker 1 assigned to task 2. Cost = 55
Worker 2 assigned to task 1. Cost = 95
Worker 3 assigned to task 0. Cost = 45

完整代码

from ortools.linear_solver import pywraplpdef main():# Datacosts = [[90, 80, 75, 70],[35, 85, 55, 65],[125, 95, 90, 95],[45, 110, 95, 115],[50, 100, 90, 100],]num_workers = len(costs)num_tasks = len(costs[0])# Solver# Create the mip solver with the SCIP backend.solver = pywraplp.Solver.CreateSolver("SCIP")if not solver:return# Variables# x[i, j] is an array of 0-1 variables, which will be 1# if worker i is assigned to task j.x = {}for i in range(num_workers):for j in range(num_tasks):x[i, j] = solver.IntVar(0, 1, "")# Constraints# Each worker is assigned to at most 1 task.for i in range(num_workers):solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)# Each task is assigned to exactly one worker.for j in range(num_tasks):solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)# Objectiveobjective_terms = []for i in range(num_workers):for j in range(num_tasks):objective_terms.append(costs[i][j] * x[i, j])solver.Minimize(solver.Sum(objective_terms))# Solvestatus = solver.Solve()# Print solution.if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:print(f"Total cost = {solver.Objective().Value()}\n")for i in range(num_workers):for j in range(num_tasks):# Test if x[i,j] is 1 (with tolerance for floating point arithmetic).if x[i, j].solution_value() > 0.5:print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")else:print("No solution found.")if __name__ == "__main__":main()

这篇关于基于Or-Tools的指派问题建模求解(PythonAPI)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297423

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例