FGSM(Fast Gradient Sign Method)算法源码解析

2023-10-29 00:36

本文主要是介绍FGSM(Fast Gradient Sign Method)算法源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接:https://arxiv.org/abs/1412.6572
源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master


源码

import torch
import torch.nn as nnfrom ..attack import Attackclass FGSM(Attack):r"""FGSM in the paper 'Explaining and harnessing adversarial examples'[https://arxiv.org/abs/1412.6572]Distance Measure : LinfArguments:model (nn.Module): model to attack.eps (float): maximum perturbation. (Default: 8/255)Shape:- images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`,        `H = height` and `W = width`. It must have a range [0, 1].- labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`.- output: :math:`(N, C, H, W)`.Examples::>>> attack = torchattacks.FGSM(model, eps=8/255)>>> adv_images = attack(images, labels)"""def __init__(self, model, eps=8/255):super().__init__("FGSM", model)self.eps = epsself.supported_mode = ['default', 'targeted']def forward(self, images, labels):r"""Overridden."""self._check_inputs(images)images = images.clone().detach().to(self.device)labels = labels.clone().detach().to(self.device)if self.targeted:target_labels = self.get_target_label(images, labels)loss = nn.CrossEntropyLoss()images.requires_grad = Trueoutputs = self.get_logits(images)# Calculate lossif self.targeted:cost = -loss(outputs, target_labels)else:cost = loss(outputs, labels)# Update adversarial imagesgrad = torch.autograd.grad(cost, images,retain_graph=False, create_graph=False)[0]adv_images = images + self.eps*grad.sign()adv_images = torch.clamp(adv_images, min=0, max=1).detach()return adv_images

解析

FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境下,通过求出损失cost对输入的导数,然后用符号函数sign()得到其具体的梯度方向,接着乘以一个步长eps,得到的“扰动”加在原来的输入 上就得到了在FGSM攻击下的样本。
可以仔细回忆一下,在神经网络的反向传播当中,我们在训练过程时就是沿着梯度下降的方向来更新更新 w , b w,b w,b的值。这样做可以使得网络往损失cost减小的方向收敛。简单来说,梯度方向代表了损失cost增大速度最快的方向,FGSM算法假设目标损失函数 J ( x , y ) J(x,y) J(x,y) x x x之间是近似线性的,即 J ( x , y ) ≈ w T x J(x ,y)≈w^Tx J(x,y)wTx,所以沿着梯度方向改变输入 x x x可以增大损失,从而达到使模型分类错误的目的。具体做法是在图像上加一个扰动 η \eta η η = ϵ s i g n ( ▽ x J ( θ , x , y ) ) \eta= \epsilon sign(\bigtriangledown_{x}J(\theta,x,y)) η=ϵsign(xJ(θ,x,y)),其中 ▽ x \bigtriangledown_{x} x即梯度, ϵ \epsilon ϵ即步长,也就是每个像素扰动的最大值。

forward()函数就是攻击过程,输入图像images和标签y,即可返回对抗图像adv_images
images = images.clone().detach().to(self.device)clone()将图像克隆到一块新的内存区(pytorch默认同样的tensor共享一块内存区);detach()是将克隆的新的tensor从当前计算图中分离下来,作为叶节点,从而可以计算其梯度;to()作用就是将其载入设备。
target_labels = self.get_target_label(images, labels):是有目标攻击的情况,由于该论文并没有探讨有目标攻击,这里就先不做解释。
loss = nn.CrossEntropyLoss():设置损失函数为交叉熵损失。
images.requires_grad = True:将这个参数设置为True,pytorch就会在程序运行过程中自动生成计算图,供计算梯度使用。
outputs = self.get_logits(images):获得图像的在模型中的输出值。
cost = loss(outputs, labels):计算损失
grad = torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0]costimages求导,得到梯度grad
adv_images = images + self.eps*grad.sign():根据公式在原图像上增加一个扰动,得到对抗图像。
adv_images = torch.clamp(adv_images, min=0, max=1).detach():将images中大于1的部分设为1,小于0的部分设为0,防止越界。

思考

FGSM算法假设目标损失函数 J ( x , y ) J(x,y) J(x,y) x x x之间是近似线性的,但是这个线性假设不一定正确,如果J JJ和x xx不是线性的,那么在 ( 0 , ϵ s i g n ( ▽ x J ( θ , x , y ) ) ) (0,\epsilon sign(\bigtriangledown_{x}J(\theta,x,y))) (0,ϵsign(xJ(θ,x,y)))之间是否存在某个扰动,使得 J J J增加的也很大,此时 x x x的修改量就可以小于 ϵ \epsilon ϵ。于是,有学者就提出迭代的方式来找各个像素点的扰动,也就是BIM算法。

这篇关于FGSM(Fast Gradient Sign Method)算法源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297045

相关文章

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操