计算机数值方法-雅可比迭代和高斯赛德尔迭代

2023-10-28 03:59

本文主要是介绍计算机数值方法-雅可比迭代和高斯赛德尔迭代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法流程

其实迭代法前面已经学习过啦,这里的迭代是在前面迭代的基础上的高阶形式——即解决线性方程组的问题。

下面简单介绍雅克比迭代的基本流程。

雅可比迭代

有一线性方程组, A x = b Ax=b Ax=b,其中:
在这里插入图片描述
我们可以将其化为以下形式:
x i = B x j + f , ( i = 1 , 2 , 3...... n , j = 1 , 2 , 3 , ¬ i . . . . . n ) x_i=Bx_j+f,(i=1,2,3......n,j=1,2,3,\lnot i.....n) xi=Bxj+f,(i=1,2,3......n,j=1,2,3,¬i.....n)
则迭代形式可化为:
x i = B x i + 1 + f x^{i}=Bx^{i+1}+f xi=Bxi+1+f
j a c o b i jacobi jacobi迭代法的流程是:
若系数矩阵 A A A是非奇异矩阵且 a i i ̸ ≠ 0 a_{ii}\not\ne0 aii=0,则可以将 A A A分裂成:
A = D + L + U A=D+L+U A=D+L+U
其中 D D D为对角矩阵, L L L为下三角矩阵, U U U为上三角矩阵
则迭代公式可以转换为:
x i = − D − 1 ( L + U ) x i + 1 + f x^{i}=-D^{-1}(L+U)x^{i+1}+f xi=D1(L+U)xi+1+f
整理得:
在这里插入图片描述
具此求解.

高斯-赛德尔迭代

在雅可比迭代的流程中我们不难发现
在这里插入图片描述
前一步计算出来的 x i k + 1 x^{k+1}_i xik+1在下一步中并没有利用到,而新计算出来的值必定比前置更为精确,故为了使计算更为精确,我们将下一步中的 x i k x^k_i xik替换为上一步中计算出来的 x i k + 1 x^{k+1}_i xik+1进行计算,这种算法就叫做高斯-赛德尔迭代(Gauss-Seidel)
化简得到:
在这里插入图片描述

C++代码

雅可比迭代:

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long long
const int N = 1e3 + 10;
double A[N][N], B[N], X[N];
int n;
void jacobi()
{int k = N;while (k--){double X2[N];for (int i = 0; i < n; i++){double cnt = 0;for (int j = 0; j < n; j++){if (j == i)continue;elsecnt += A[i][j] * X[j];}X2[i] = (B[i] - cnt) / A[i][i];}for(int i= 0; i < n; i++) X[i]=X2[i];}for (int i = 0; i < n; i++)printf("X[%d]=%lf%c", i + 1, X2[i], i == n - 1 ? '\n' : ' ');
}signed main()
{cin >> n;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> A[i][j];for (int i = 0; i < n; i++)cin >> B[i];jacobi();return 0;
}

高斯赛德尔迭代:

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long long
const int N = 1e3 + 10;
double A[N][N], B[N], X[N];
int n;
void gauss_seidel()
{int k = N;while (k--){for (int i = 0; i < n; i++){double cnt = 0;for (int j = 0; j < n; j++){if (j == i)continue;elsecnt += A[i][j] * X[j];}X[i] = (B[i] - cnt) / A[i][i];}}for (int i = 0; i < n; i++)printf("X[%d]=%lf%c", i + 1, X[i], i == n - 1 ? '\n' : ' ');
}signed main()
{cin >> n;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> A[i][j];for (int i = 0; i < n; i++)cin >> B[i];gauss_seidel();return 0;
}

python代码

雅可比迭代:

在这里插入代码片

高斯-赛德尔迭代:

在这里插入代码片

这篇关于计算机数值方法-雅可比迭代和高斯赛德尔迭代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/290537

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关