2023年第四届MathorCup大数据挑战赛(B题)|电商零售商家需求预测及库存优化问题|数学建模完整代码+建模过程全解全析

本文主要是介绍2023年第四届MathorCup大数据挑战赛(B题)|电商零售商家需求预测及库存优化问题|数学建模完整代码+建模过程全解全析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2021年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。

希望这些想法对大家的做题有一定的启发和借鉴意义。
让我们来看看MathorCup的B题!
在这里插入图片描述

问题重述

这是一个电商零售商家需求预测及库存优化问题的描述。这个问题涉及到电商平台上的上千个商家,它们将商品放在不同的仓库中,而电商平台需要进行供应链管理,以降低库存成本并保证按时交货。主要问题包括需求预测和库存优化。

问题一:使用历史出货量数据(附件1)和相关附件中的信息,需要预测各商家在各仓库的商品在2023年5月16日至2023年5月30日的需求量。预测的结果需要填写在结果表1,并上传至竞赛平台。同时,需要对模型的预测性能进行评价,并讨论如何对这些时间序列进行分类以找到相似特征。

问题二:有一些新的商家+仓库+商品维度出现(附件5),需要根据历史数据(附件1)找到相似序列并预测这些新维度在2023年5月16日至2023年5月30日的需求量。预测结果需要填写在结果表2,并上传至竞赛平台。

问题三:每年6月有大型促销,给需求预测和履约带来挑战。附件6提供了去年双十一期间的需求量数据,需要参考这些数据并给出2023年6月1日至2023年6月20日的需求量预测值,填写在结果表3中并上传至竞赛平台。

问题一

问题一涉及对各商家在各仓库的商品需求进行预测,此题我们使用ARIMA模型来进行预测。

步骤1:数据预处理
首先,对历史出货量数据进行预处理,包括数据清洗、缺失值处理等,以确保数据的质量和一致性。对附件2-4的信息也进行必要的数据关联,以便使用商品、商家和仓库的特征信息。

步骤2:时间序列分类
根据问题描述,需要对不同商家、仓库和商品的时间序列进行分类,以找到相似的特征。这可以通过以下步骤来实现:

a. 对每个商家在各仓库的商品需求量序列进行聚类分析,例如使用K均值聚类。

b. 对聚类后的序列进行统计特征提取,如平均值、标准差、季节性等。

c. 基于提取的特征,使用聚类结果将序列分为不同的类别。

步骤3:需求预测

对于每个时间序列类别,使用ARIMA模型进行需求预测。

步骤4:模型评价
评估模型的性能可以使用各种指标,如1-wmape,MAE,RMSE等。1-wmape在问题描述中已经给出,可以计算每个序列的预测误差并汇总为模型整体性能。

ARIMA模型

  • ARIMA(AutoRegressive Integrated Moving Average)模型是一种经典的时间序列分析方法,用于对时间序列数据进行建模和预测。它结合了自回归(AR)、差分(I)和滑动平均(MA)三个组成部分,用于处理具有趋势和季节性的时间序列数据。ARIMA模型旨在捕捉数据中的自相关性和移动平均性,从而生成未来时间点的预测。

下面是ARIMA模型的核心概念:

  1. 自回归(AR)部分:ARIMA模型中的"AR"代表"自回归"。这部分考虑了时间序列中的自相关性,即过去时间点的观测值对当前时间点的影响。AR部分表示为p,它表示在模型中考虑多少期的过去观测值。例如,ARIMA(p, d, q)中的p。

  2. 差分(I)部分:ARIMA模型中的"I"代表"差分"。这部分用于处理非稳定的时间序列,即具有趋势和季节性的序列。通过差分,可以将非稳定序列转化为稳定的序列。d表示差分的次数。例如,ARIMA(p, d, q)中的d。

  3. 滑动平均(MA)部分:ARIMA模型中的"MA"代表"滑动平均"。这部分考虑了时间序列中的滑动平均性,即过去时间点的预测误差对当前时间点的影响。MA部分表示为q,它表示在模型中考虑多少期的滑动平均误差。例如,ARIMA(p, d, q)中的q。

ARIMA模型的建模步骤通常包括以下几个关键步骤:

  1. 观察时间序列数据:首先,分析时间序列数据,检查是否存在趋势、季节性以及自相关性。

  2. 差分操作:如果时间序列数据不是稳定的,需要进行差分操作,直到数据变得稳定。差分的次数由参数d决定。

  3. 模型识别:通过观察自相关函数(ACF)和偏自相关函数(PACF)的图表,确定ARIMA模型的阶数(p、d、q)。

  4. 拟合ARIMA模型:使用选定的参数,拟合ARIMA模型到时间序列数据。

  5. 模型诊断:检查模型的残差,确保其是白噪声,没有自相关性。

  6. 预测:使用拟合好的ARIMA模型生成未来时间点的预测。

在问题一中,使用ARIMA模型的主要原因是针对历史出货量数据进行需求预测。原因在于:

  1. 存在趋势和季节性:ARIMA模型适用于具有趋势和季节性的时间序列数据,这在电商领域通常是普遍存在的情况。历史出货量数据往往受季节性促销、市场趋势等因素的影响,因此需要模型来捕捉这些影响。

  2. 稳定性处理:ARIMA模型中的"差分"(I)部分用于将非稳定的时间序列数据转化为稳定的序列。这对于处理数据中的趋势和季节性非常重要,以便模型能够准确预测未来需求。

  3. 自相关性和滑动平均性:ARIMA模型的"自回归"(AR)和"滑动平均"(MA)部分分别考虑了时间序列数据中的自相关性和滑动平均性,从而更好地捕捉数据的内在模式。

  4. 参数调整:ARIMA模型的参数(p、d、q)可以根据时间序列数据的特点进行调整,以获得更准确的预测。这使得ARIMA模型非常灵活,适应不同类型的时间序列。

因为它可以帮助预测各商家在各仓库的商品需求,考虑了历史趋势、季节性和自相关性,有助于更好地管理库存和满足客户需求。此外,ARIMA模型的参数可以根据不同商家、仓库和商品的需求模式进行调整,从而提高预测的准确性。
代码如下:

import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller# 读取历史出货量数据
historical_data = pd.read_csv('附件1.csv')
# 假设历史数据按日期升序排列
historical_data['date'] = pd.to_datetime(historical_data['date'])# 定义检测时间序列稳定性的函数
def test_stationarity(timeseries):# 进行滚动统计检验(Rolling Statistics)rolmean = timeseries.rolling(window=30).mean()  # 选择合适的窗口大小rolstd = timeseries.rolling(window=30).std()# 绘制滚动统计检验结果orig = plt.plot(timeseries, color='blue', label='原始数据')mean = plt.plot(rolmean, color='red', label='滚动均值')std = plt.plot(rolstd, color='black', label='滚动标准差')plt.legend(loc='best')plt.title('滚动均值和滚动标准差')plt.show()# 进行Dicky-Fuller检验print('Dicky-Fuller检验结果:')dftest = adfuller(timeseries, autolag='AIC')dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'])for key, value in dftest[4].items():dfoutput['Critical Value (%s)' % key] = valueprint(dfoutput)# 做时间序列稳定性检验
test_stationarity(historical_data['qty'])# 进行时间序列差分以达到稳定性
# 通常需要多次差分,直到时间序列变得稳定
differenced_data = historical_data['qty'].diff().dropna()# 再次进行稳定性检验
test_stationarity(differenced_data)# 使用ARIMA模型进行预测
model = sm.tsa.ARIMA(historical_data['qty'], order=(1, 1, 1))  # 选择合适的ARIMA参数
results = model.fit()# 输出模型的统计摘要
print(results.summary())

问题二

问题二要求针对新出现的商家+仓库+商品维度进行需求预测,这些维度在历史数据中没有出现过。建模思路可以分为以下几个步骤:

步骤1:数据准备

  • 首先,需要识别出历史数据中不存在的商家+仓库+商品维度。这些新维度可能代表新上市的商品或改变了商品存放的仓库。

步骤2:相似序列查找

  • 针对每个新出现的商家+仓库+商品维度,需要查找历史数据中与之相似的时间序列。相似性可以通过多种方式来衡量,如时间序列模式、统计特征等。以下是一种计算相似性的思路:

    a. 对于每个新维度,计算其与历史数据中所有商家+仓库+商品维度的相似性分数。这可以使用各种距离度量方法(如欧氏距离、相关系数等)来计算。

    b. 选择与新维度相似性得分最高的一组历史时间序列。这组历史序列将被用作预测新维度的参考。

步骤3:需求预测

  • 使用选定的相似历史序列,可以应用相同的需求预测模型(例如,ARIMA、加权移动平均或其他时间序列模型)来预测新维度的需求。预测的时间段为2023-05-16至2023-05-30。

步骤4:结果记录

  • 将预测结果填写在结果表2中,并上传至竞赛平台。

公式表示:

  1. 相似性计算(可以使用欧氏距离作为相似性度量的一个示例):

    欧氏距离公式:

Distance ( X , Y ) = ∑ i = 1 n ( X i − Y i ) 2 \text{Distance}(X, Y) = \sqrt{\sum_{i=1}^{n} (X_i - Y_i)^2} Distance(X,Y)=i=1n(XiYi)2

其中,X 和 Y是两个时间序列, X i X_i Xi Y i Y_i Yi分别是它们的对应时间点的值,(n) 是时间序列长度。

  1. 需求预测

    对于新维度,使用选定的相似历史序列中的模型(如ARIMA)进行需求预测。

这个建模思路允许你根据历史数据中的相似性来预测新维度的需求,而不需要依赖完全没有历史数据的新维度。因此,你可以根据相似性找到最合适的历史数据,并基于这些历史数据来进行需求预测。

其中,(X) 和 (Y) 是两个时间序列, X i X_i Xi Y i Y_i Yi分别是它们的对应时间点的值,(n) 是时间序列长度。

  1. 需求预测

    对于新维度,使用选定的相似历史序列中的模型(如ARIMA)进行需求预测。
    Demand Forecast ( X ) = Model ( X similar ) \text{Demand Forecast}(X) = \text{Model}(X_{\text{similar}}) Demand Forecast(X)=Model(Xsimilar)
    代码:

import pandas as pd
import numpy as np
from scipy.spatial.distance import euclidean
from statsmodels.tsa.arima_model import ARIMA# 读取历史数据、新维度数据
historical_data = pd.read_csv('附件1.csv')
new_dimension_data = pd.read_csv('附件5.csv')# 存储新维度的预测结果
result_table_2 = pd.DataFrame(columns=['seller_no', 'warehouse_no', 'product_no', 'date', 'predicted_demand'])# 针对每个新维度进行需求预测
for index, new_dimension_row in new_dimension_data.iterrows():# 获取新维度的商家、仓库、商品信息seller = new_dimension_row['seller_no']warehouse = new_dimension_row['warehouse_no']product = new_dimension_row['product_no']# 查找与新维度相似的历史数据,使用欧氏距离进行相似性计算historical_data['similarity'] = historical_data.apply(lambda row: euclidean([row['seller_no'], row['warehouse_no'], row['product_no']],[seller, warehouse, product]),axis=1)# 选择相似性得分最高的历史序列most_similar_row = historical_data.loc[historical_data['similarity'].idxmin()]# 获取历史相似序列的需求历史数据historical_demand = most_similar_row['qty'].values# 使用ARIMA模型进行需求预测# 这里需要根据你的数据和需求进一步调整ARIMA模型的参数arima_model = ARIMA(historical_demand, order=(5,1,0))  # 举例使用ARIMA(5,1,0)arima_fit = arima_model.fit(disp=0)# 预测新维度的需求forecast = arima_fit.forecast(steps=15)  # 预测未来15天的需求# 构建预测结果并添加到结果表2forecast_dates = pd.date_range(start='2023-05-16', end='2023-05-30')forecast_data = pd.DataFrame({

问题三

问题三要求预测商家+仓库+商品维度在2023-06-01至2023-06-20期间的需求,考虑到大型促销对需求的影响。以下是问题三的建模思路:

步骤1:数据准备

  • 读取历史数据,包括商家+仓库+商品维度在去年双十一期间的需求量数据(附件)。

步骤2:特定日期范围的历史数据选择

  • 从历史数据中筛选出与目标日期范围(2023-06-01至2023-06-20)相对应的数据,这些数据将用于建模。

步骤3:需求预测

  • 使用时间序列模型(如ARIMA)或其他适当的模型,对商家+仓库+商品维度在目标日期范围内的需求进行预测。需要考虑大型促销对需求的影响,可以将促销期视为外部变量。

步骤4:结果记录

  • 将预测结果填写在结果表3中,并上传至竞赛平台。

以下是一些公式示例,用于表示ARIMA模型中的差分(用于稳定性处理)和需求预测:

差分(Differencing)

差分用于将非稳定的时间序列数据转化为稳定的序列,以便ARIMA模型能够准确预测。差分一次通常表示将时间序列减去其前一时刻的值。

差分公式:

Difference ( Y t ) = Y t − Y t − 1 \text{Difference}(Y_t) = Y_t - Y_{t-1} Difference(Yt)=YtYt1

需求预测:

需求预测可以使用ARIMA模型中的预测方法。具体的预测公式取决于ARIMA模型的参数和历史数据的性质。

ARIMA模型的预测公式:

Y ^ t + h = μ + ∑ i = 1 p ϕ i Y t + h − i − ∑ j = 1 q θ j Y ^ t + h − j \hat{Y}_{t+h} = \mu + \sum_{i=1}^{p} \phi_i Y_{t+h-i} - \sum_{j=1}^{q} \theta_j \hat{Y}_{t+h-j} Y^t+h=μ+i=1pϕiYt+hij=1qθjY^t+hj

其中, Y ^ t + h \hat{Y}_{t+h} Y^t+h表示在时间 t + h t+h t+h 的预测值, μ \mu μ 是模型的均值,(p) 和 (q) 是ARIMA模型的阶数, ϕ i \phi_i ϕi θ j \theta_j θj 是模型的参数。

import pandas as pd
import numpy as np
from statsmodels.tsa.arima_model import ARIMA# 读取历史数据(附件6)
historical_data = pd.read_csv('附件6.csv')# 存储预测结果
result_table_3 = pd.DataFrame(columns=['seller_no', 'warehouse_no', 'product_no', 'date', 'predicted_demand'])# 针对每个商家+仓库+商品维度进行需求预测
for index, row in historical_data.iterrows():seller = row['seller_no']warehouse = row['warehouse_no']product = row['product_no']# 获取历史需求数据,以便建立ARIMA模型historical_demand = row['qty'].values# 使用ARIMA模型进行需求预测# 这里需要根据你的数据和需求进一步调整ARIMA模型的参数arima_model = ARIMA(historical_demand, order=(5,1,0))  # 举例使用ARIMA(5,1,0)arima_fit = arima_model.fit(disp=0)# 预测2023-06-01至2023-06-20的需求forecast_dates = pd.date_range(start='2023-06-01', end='2023-06-20')forecast = arima_fit.forecast(steps=len(forecast_dates))# 构建预测结果并添加到结果表3forecast_data = pd.DataFrame({'seller_no': [seller] * len(forecast_dates),'warehouse_no': [warehouse] * len(forecast_dates),'product_no': [product] * len(forecast_dates),'date': forecast_dates,#见完整代码

更多完整版代码+思路
2023年第四届MathorCup大数据挑战赛(B题)

这篇关于2023年第四届MathorCup大数据挑战赛(B题)|电商零售商家需求预测及库存优化问题|数学建模完整代码+建模过程全解全析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/288276

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结