Python数据挖掘:入门、进阶与实用案例分析——基于非侵入式负荷检测与分解的电力数据挖掘

本文主要是介绍Python数据挖掘:入门、进阶与实用案例分析——基于非侵入式负荷检测与分解的电力数据挖掘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 摘要
  • 01 案例背景
  • 02 分析目标
  • 03 分析过程
  • 04 数据准备
  • 05 属性构造
  • 06 模型训练
  • 07 性能度量
  • 08 推荐阅读
  • 赠书活动

摘要

本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。

在这里插入图片描述

01 案例背景

为了更好地监测用电设备的能耗情况,电力分项计量技术随之诞生。电力分项计量对于电力公司准确预测电力负荷、科学制定电网调度方案、提高电力系统稳定性和可靠性有着重要意义。对用户而言,电力分项计量可以帮助用户了解用电设备的使用情况,提高用户的节能意识,促进科学合理用电。
在这里插入图片描述

02 分析目标

本案例根据非侵入式负荷检测与分解的电力数据挖掘的背景和业务需求,需要实现的目标如下。

  • 分析每个用电设备的运行属性。

  • 构建设备判别属性库。

  • 利用K最近邻模型,实现从整条线路中“分解”出每个用电设备的独立用电数据。

03 分析过程

在这里插入图片描述

04 数据准备

  1. 数据探索
    在本案例的电力数据挖掘分析中,不会涉及操作记录数据。因此,此处主要获取设备数据、周波数据和谐波数据。在获取数据后,由于数据表较多,每个表的属性也较多,所以需要对数据进行数据探索分析。在数据探索过程中主要根据原始数据特点,对每个设备的不同属性对应的数据进行可视化,得到的部分结果如图1~图3所示。
    在这里插入图片描述

图1 无功功率和总无功功率

在这里插入图片描述

图2 电流轨迹

在这里插入图片描述

图3 电压轨迹

根据可视化结果可以看出,不同设备之间的电流、电压和功率属性各不相同。

对数据属性进行可视化如代码清单1所示。

代码清单1 对数据属性进行可视化

import pandas as pdimport matplotlib.pyplot as pltimport osfilename = os.listdir('../data/附件1')  # 得到文件夹下的所有文件名称n_filename = len(filename)  # 给各设备的数据添加操作信息,画出各属性轨迹图并保存def fun(a):save_name = ['YD1', 'YD10', 'YD11', 'YD2', 'YD3', 'YD4','YD5', 'YD6', 'YD7', 'YD8', 'YD9']plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号for i in range(a):Sb = pd.read_excel('../data/附件1/' + filename[i], '设备数据', index_col = None)Xb = pd.read_excel('../data/附件1/' + filename[i], '谐波数据', index_col = None)Zb = pd.read_excel('../data/附件1/' + filename[i], '周波数据', index_col = None)# 电流轨迹图plt.plot(Sb['IC'])plt.title(save_name[i] + '-IC')plt.ylabel('电流(0.001A)')plt.show()# 电压轨迹图lt.plot(Sb['UC'])plt.title(save_name[i] + '-UC')plt.ylabel('电压(0.1V)')plt.show()# 有功功率和总有功功率plt.plot(Sb[['PC', 'P']])plt.title(save_name[i] + '-P')plt.ylabel('有功功率(0.0001kW)')plt.show()# 无功功率和总无功功率plt.plot(Sb[['QC', 'Q']])plt.title(save_name[i] + '-Q')plt.ylabel('无功功率(0.0001kVar)')plt.show()# 功率因数和总功率因数plt.plot(Sb[['PFC', 'PF']])plt.title(save_name[i] + '-PF')plt.ylabel('功率因数(%)')plt.show()# 谐波电压plt.plot(Xb.loc[:, 'UC02':].T)plt.title(save_name[i] + '-谐波电压')plt.show()# 周波数据plt.plot(Zb.loc[:, 'IC001':].T)plt.title(save_name[i] + '-周波数据')plt.show()fun(n_filename)
  1. 缺失值处理
    通过数据探索,发现数据中部分“time”属性存在缺失值,需要对这部分缺失值进行处理。由于每份数据中“time”属性的缺失时间段长不同,所以需要进行不同的处理。对于每个设备数据中具有较大缺失时间段的数据进行删除处理,对于具有较小缺失时间段的数据使用前一个值进行插补。

在进行缺失值处理之前,需要将训练数据中所有设备数据中的设备数据表、周波数据表、谐波数据表和操作记录表,以及测试数据中所有设备数据中的设备数据表、周波数据表和谐波数据表都提取出来,作为独立的数据文件,生成的部分文件如图4所示。
在这里插入图片描述

图4 提取数据文件部分结果

代码清单2 提取数据文件

提取数据文件如代码清单2所示。

# 将xlsx文件转化为CSV文件import globimport pandas as pdimport mathdef file_transform(xls):print('共发现%s个xlsx文件' % len(glob.glob(xls)))print('正在处理............')for file in glob.glob(xls):  # 循环读取同文件夹下的xlsx文件combine1 = pd.read_excel(file, index_col=0, sheet_name=None)for key in combine1:combine1[key].to_csv('../tmp/' + file[8: -5] + key + '.csv', encoding='utf-8')print('处理完成')xls_list = ['../data/附件1/*.xlsx', '../data/附件2/*.xlsx']file_transform(xls_list[0])  # 处理训练数据file_transform(xls_list[1])  # 处理测试数据

提取数据文件完成后,对提取的数据文件进行缺失值处理,处理后生成的部分文件如图5所示。
在这里插入图片描述

图5 缺失值处理后的部分结果

缺失值处理如代码清单3所示。

代码清单3 缺失值处理

# 对每个数据文件中较大缺失时间点数据进行删除处理,较小缺失时间点数据进行前值替补def missing_data(evi):print('共发现%s个CSV文件' % len(glob.glob(evi)))for j in glob.glob(evi):fr = pd.read_csv(j, header=0, encoding='gbk')fr['time'] = pd.to_datetime(fr['time'])helper = pd.DataFrame({'time': pd.date_range(fr['time'].min(), fr['time'].max(), freq='S')})fr = pd.merge(fr, helper, on='time', how='outer').sort_values('time')fr = fr.reset_index(drop=True)frame = pd.DataFrame()for g in range(0, len(list(fr['time'])) - 1):if math.isnan(fr.iloc[:, 1][g + 1]) and math.isnan(fr.iloc[:, 1][g]):continueelse:scop = pd.Series(fr.loc[g])frame = pd.concat([frame, scop], axis=1)frame = pd.DataFrame(frame.values.T, index=frame.columns, columns=frame.index)frames = frame.fillna(method='ffill')frames.to_csv(j[:-4] + '1.csv', index=False, encoding='utf-8')print('处理完成')evi_list = ['../tmp/附件1/*数据.csv', '../tmp/附件2/*数据.csv']missing_data(evi_list[0])  # 处理训练数据missing_data(evi_list[1])  # 处理测试数据

05 属性构造

虽然在数据准备过程中对属性进行了初步处理,但是引入的属性太多,而且这些属性之间存在重复的信息。为了保留重要的属性,建立精确、简单的模型,需要对原始属性进一步筛选与构造。

  1. 设备数据
    在数据探索过程中发现,不同设备的无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数差别很大,具有较高的区分度,故本案例选择无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数作为设备数据的属性构建判别属性库。

处理好缺失值后,每个设备的数据都由一张表变为了多张表,所以需要将相同类型的数据表合并到一张表中,如将所有设备的设备数据表合并到一张表当中。同时,因为缺失值处理的其中一种方式是使用前一个值进行插补,所以产生了相同的记录,需要对重复出现的记录进行处理,处理后生成的数据表如表1所示。

表1 合并且去重后的设备数据

在这里插入图片描述
合并且去重设备数据如代码清单4所示。

代码清单4 合并且去重设备数据

import globimport pandas as pdimport os# 合并11个设备数据及处理合并中重复的数据def combined_equipment(csv_name):# 合并print('共发现%s个CSV文件' % len(glob.glob(csv_name)))print('正在处理............')for i in glob.glob(csv_name):  # 循环读取同文件夹下的CSV文件fr = open(i, 'rb').read()file_path = os.path.split(i)with open(file_path[0] + '/device_combine.csv', 'ab') as f:f.write(fr)print('合并完毕!')# 去重df = pd.read_csv(file_path[0] + '/device_combine.csv', header=None, encoding='utf-8')datalist = df.drop_duplicates()datalist.to_csv(file_path[0] + '/device_combine.csv', index=False, header=0)print('去重完成')csv_list = ['../tmp/附件1/*设备数据1.csv', '../tmp/附件2/*设备数据1.csv']combined_equipment(csv_list[0])  # 处理训练数据combined_equipment(csv_list[1])  # 处理测试数据
  1. 周波数据
    在数据探索过程中发现,周波数据中的电流随着时间的变化有较大的起伏,不同设备的周波数据中的电流绘制出来的折线图的起伏不尽相同,具有明显的差异,故本案例选择波峰和波谷作为周波数据的属性构建判别属性库。

由于原始的周波数据中并未存在电流的波峰和波谷两个属性,所以需要进行属性构建,构建生成的数据表如表2所示。

表2 构建周波数据中的属性生成的数据

在这里插入图片描述
构建周波数据中的属性代码如代码清单5所示。

代码清单5 构建周波数据中的属性

# 求取周波数据中电流的波峰和波谷作为属性参数import globimport pandas as pdfrom sklearn.cluster import KMeansimport osdef cycle(cycle_file):for file in glob.glob(cycle_file):cycle_YD = pd.read_csv(file, header=0, encoding='utf-8')cycle_YD1 = cycle_YD.iloc[:, 0:128]models = []for types in range(0, len(cycle_YD1)):model = KMeans(n_clusters=2, random_state=10)model.fit(pd.DataFrame(cycle_YD1.iloc[types, 1:]))  # 除时间以外的所有列models.append(model)# 相同状态间平稳求均值mean = pd.DataFrame()for model in models:r = pd.DataFrame(model.cluster_centers_, )  # 找出聚类中心r = r.sort_values(axis=0, ascending=True, by=[0])mean = pd.concat([mean, r.reset_index(drop=True)], axis=1)mean = pd.DataFrame(mean.values.T, index=mean.columns, columns=mean.index)mean.columns = ['波谷', '波峰']mean.index = list(cycle_YD['time'])mean.to_csv(file[:-9] + '波谷波峰.csv', index=False, encoding='gbk ')cycle_file = ['../tmp/附件1/*周波数据1.csv', '../tmp/附件2/*周波数据1.csv']cycle(cycle_file[0])  # 处理训练数据cycle(cycle_file[1])  # 处理测试数据# 合并周波的波峰波谷文件def merge_cycle(cycles_file):means = pd.DataFrame()for files in glob.glob(cycles_file):mean0 = pd.read_csv(files, header=0, encoding='gbk')means = pd.concat([means, mean0])file_path = os.path.split(glob.glob(cycles_file)[0])means.to_csv(file_path[0] + '/zuhe.csv', index=False, encoding='gbk')print('合并完成')cycles_file = ['../tmp/附件1/*波谷波峰.csv', '../tmp/附件2/*波谷波峰.csv']merge_cycle(cycles_file[0])  # 训练数据merge_cycle(cycles_file[1])  # 测试数据

06 模型训练

在判别设备种类时,选择K最近邻模型进行判别,利用属性构建而成的属性库训练模型,然后利用训练好的模型对设备1和设备2进行判别。构建判别模型并对设备种类进行判别,如代码清单6所示。

代码清单6 建立判别模型并对设备种类进行判别

import globimport pandas as pdfrom sklearn import neighborsimport pickleimport os# 模型训练def model(test_files, test_devices):# 训练集zuhe = pd.read_csv('../tmp/附件1/zuhe.csv', header=0, encoding='gbk')device_combine = pd.read_csv('../tmp/附件1/device_combine.csv', header=0, encoding='gbk')train = pd.concat([zuhe, device_combine], axis=1)train.index = train['time'].tolist()  # 把“time”列设为索引train = train.drop(['PC', 'QC', 'PFC', 'time'], axis=1)train.to_csv('../tmp/' + 'train.csv', index=False, encoding='gbk')# 测试集for test_file, test_device in zip(test_files, test_devices):test_bofeng = pd.read_csv(test_file, header=0, encoding='gbk')test_devi = pd.read_csv(test_device, header=0, encoding='gbk')test = pd.concat([test_bofeng, test_devi], axis=1)test.index = test['time'].tolist()  # 把“time”列设为索引test = test.drop(['PC', 'QC', 'PFC', 'time'], axis=1)# K最近邻clf = neighbors.KNeighborsClassifier(n_neighbors=6, algorithm='auto')clf.fit(train.drop(['label'], axis=1), train['label'])predicted = clf.predict(test.drop(['label'], axis=1))predicted = pd.DataFrame(predicted)file_path = os.path.split(test_file)[1]test.to_csv('../tmp/' + file_path[:3] + 'test.csv', encoding='gbk')predicted.to_csv('../tmp/' + file_path[:3] + 'predicted.csv', index=False, encoding='gbk')with open('../tmp/' + file_path[:3] + 'model.pkl', 'ab') as pickle_file:pickle.dump(clf, pickle_file)print(clf)model(glob.glob('../tmp/附件2/*波谷波峰.csv'),glob.glob('../tmp/附件2/*设备数据1.csv'))

07 性能度量

根据代码清单6的设备判别结果,对模型进行模型评估,得到的结果如下,混淆矩阵如图7所示,ROC曲线如图8所示 。

模型分类准确度: 0.7951219512195122模型评估报告:precision    recall  f1-score   support0.0       1.00      0.84      0.92        6421.0       0.00      0.00      0.00         061.0       0.00      0.00      0.00         091.0       0.78      0.84      0.81        7792.0       0.00      0.00      0.00         593.0       0.76      0.75      0.75        59111.0       0.00      0.00      0.00         0accuracy                                0.80        205macro avg       0.36      0.35      0.35       205weighted avg       0.82      0.80      0.81       205计算auc:0.8682926829268293

注:此处部分结果已省略。
在这里插入图片描述

图7 混淆矩阵

在这里插入图片描述

图8 ROC曲线

模型评估如代码清单7所示。

代码清单7 模型评估

import globimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsfrom sklearn import metricsfrom sklearn.preprocessing import label_binarizeimport osimport pickle# 模型评估def model_evaluation(model_file, test_csv, predicted_csv):for clf, test, predicted in zip(model_file, test_csv, predicted_csv):with open(clf, 'rb') as pickle_file:clf = pickle.load(pickle_file)test = pd.read_csv(test, header=0, encoding='gbk')predicted = pd.read_csv(predicted, header=0, encoding='gbk')test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']print('模型分类准确度:', clf.score(test.drop(['label', 'time'], axis=1), test['label']))print('模型评估报告:\n', metrics.classification_report(test['label'], predicted))confusion_matrix0 = metrics.confusion_matrix(test['label'], predicted)confusion_matrix = pd.DataFrame(confusion_matrix0)class_names = list(set(test['label']))tick_marks = range(len(class_names))sns.heatmap(confusion_matrix, annot=True, cmap='YlGnBu', fmt='g')plt.xticks(tick_marks, class_names)plt.yticks(tick_marks, class_names)plt.tight_layout()plt.title('混淆矩阵')plt.ylabel('真实标签')plt.xlabel('预测标签')plt.show()y_binarize = label_binarize(test['label'], classes=class_names)predicted = label_binarize(predicted, classes=class_names)fpr, tpr, thresholds = metrics.roc_curve(y_binarize.ravel(), predicted.ravel())auc = metrics.auc(fpr, tpr)print('计算auc:', auc)  # 绘图plt.figure(figsize=(8, 4))lw = 2plt.plot(fpr, tpr, label='area = %0.2f' % auc)plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')plt.fill_between(fpr, tpr, alpha=0.2, color='b')plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel('1-特异性')plt.ylabel('灵敏度')plt.title('ROC曲线')plt.legend(loc='lower right')plt.show()model_evaluation(glob.glob('../tmp/*model.pkl'),glob.glob('../tmp/*test.csv'),glob.glob('../tmp/*predicted.csv'))

根据分析目标,需要计算实时用电量。实时用电量计算的是瞬时的用电器的电流、电压和时间的乘积,公式如下。

W = P·100/3600,P = U·I

其中,为实时用电量,单位是0.001kWh。为功率,单位为W。

实时用电量计算,得到的实时用电量如表3所示。

表3 实时用电量

![在这里插入图片描述](https://img-blog.csdnimg.cn/bcb02376b274434db46eb4576b17582d.png#pic_center) 计算实时用电量如代码清单8所示。

代码清单8 计算实时用电量

# 计算实时用电量并输出状态表def cw(test_csv, predicted_csv, test_devices):for test, predicted, test_device in zip(test_csv, predicted_csv, test_devices):# 划分预测出的时刻表test = pd.read_csv(test, header=0, encoding='gbk')test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']test['time'] = pd.to_datetime(test['time'])test.index = test['time']predicteds = pd.read_csv(predicted, header=0, encoding='gbk')predicteds.columns = ['label']indexes = []class_names = list(set(test['label']))for j in class_names:index = list(predicteds.index[predicteds['label'] == j])indexes.append(index)# 取出首位序号及时间点from itertools import groupby  # 连续数字dif_indexs = []time_indexes = []info_lists = pd.DataFrame()for y, z in zip(indexes, class_names):dif_index = []fun = lambda x: x[1] - x[0]for k, g in groupby(enumerate(y), fun):dif_list = [j for i, j in g]  # 连续数字的列表if len(dif_list) > 1:scop = min(dif_list)  # 选取连续数字范围中的第一个else:scop = dif_list[0   ]dif_index.append(scop)time_index = list(test.iloc[dif_index, :].index)time_indexes.append(time_index)info_list = pd.DataFrame({'时间': time_index, 'model_设备状态': [z] * len(time_index)})dif_indexs.append(dif_index)info_lists = pd.concat([info_lists, info_list])# 计算实时用电量并保存状态表test_devi = pd.read_csv(test_device, header=0, encoding='gbk')test_devi['time'] = pd.to_datetime(test_devi['time'])test_devi['实时用电量'] = test_devi['P'] * 100 / 3600info_lists = info_lists.merge(test_devi[['time', '实时用电量']],how='inner', left_on='时间', right_on='time')info_lists = info_lists.sort_values(by=['时间'], ascending=True)info_lists = info_lists.drop(['time'], axis=1)file_path = os.path.split(test_device)[1]info_lists.to_csv('../tmp/' + file_path[:3] + '状态表.csv', index=False, encoding='gbk')print(info_lists)cw(glob.glob('../tmp/*test.csv'),glob.glob('../tmp/*predicted.csv'),glob.glob('../tmp/附件2/*设备数据1.csv'))

08 推荐阅读

在这里插入图片描述

正版链接:https://item.jd.com/13814157.html

《Python数据挖掘:入门、进阶与实用案例分析》是一本以项目实战案例为驱动的数据挖掘著作,它能帮助完全没有Python编程基础和数据挖掘基础的读者快速掌握Python数据挖掘的技术、流程与方法。在写作方式上,与传统的“理论与实践结合”的入门书不同,它以数据挖掘领域的知名赛事“泰迪杯”数据挖掘挑战赛(已举办10届)和“泰迪杯”数据分析技能赛(已举办5届)(累计1500余所高校的10余万师生参赛)为依托,精选了11个经典赛题,将Python编程知识、数据挖掘知识和行业知识三者融合,让读者在实践中快速掌握电商、教育、交通、传媒、电力、旅游、制造等7大行业的数据挖掘方法。

本书不仅适用于零基础的读者自学,还适用于教师教学,为了帮助读者更加高效地掌握本书的内容,本书提供了以下10项附加价值:
(1)建模平台:提供一站式大数据挖掘建模平台,免配置,包含大量案例工程,边练边学,告别纸上谈兵
(2)视频讲解:提供不少于600分钟Python编程和数据挖掘相关教学视频,边看边学,快速收获经验值
(3)精选习题:精心挑选不少于60道数据挖掘练习题,并提供详细解答,边学边练,检查知识盲区
(4)作者答疑:学习过程中有任何问题,通过“树洞”小程序,纸书拍照,一键发给作者,边问边学,事半功倍
(5)数据文件:提供各个案例配套的数据文件,与工程实践结合,开箱即用,增强实操性
(6)程序代码:提供书中代码的电子文件及相关工具的安装包,代码导入平台即可运行,学习效果立竿见影
(7)教学课件:提供配套的PPT课件,使用本书作为教材的老师可以申请,节省备课时间
(8)模型服务:提供不少于10个数据挖掘模型,模型提供完整的案例实现过程,助力提升数据挖掘实践能力
(9)教学平台:泰迪科技为本书提供的附加资源提供一站式数据化教学平台,附有详细操作指南,边看边学边练,节省时间
(10)就业推荐:提供大量就业推荐机会,与1500+企业合作,包含华为、京东、美的等知名企业

通过学习本书,读者可以理解数据挖掘的原理,迅速掌握大数据技术的相关操作,为后续数据分析、数据挖掘、深度学习的实践及竞赛打下良好的技术基础。
在这里插入图片描述

赠书活动

  • 🎁本次送书1~4本【取决于阅读量,阅读量越多,送的越多】👈
  • ⌛️活动时间:截止到2023-11月 3号
  • ✳️参与方式:关注博主+三连(点赞、收藏、评论)

转载自:https://blog.csdn.net/u014727709/article/details/131679523
欢迎start,欢迎评论,欢迎指正

这篇关于Python数据挖掘:入门、进阶与实用案例分析——基于非侵入式负荷检测与分解的电力数据挖掘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/286400

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod