CT 扫描的 3D 图像分类-预测肺炎的存在

2023-10-27 05:30

本文主要是介绍CT 扫描的 3D 图像分类-预测肺炎的存在,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

此示例将展示构建 3D 卷积神经网络 (CNN) 所需的步骤,以预测计算机断层扫描 (CT) 扫描中是否存在病毒性肺炎。2D CNN 通常用于处理 RGB 图像(3 通道)。3D CNN 就是 3D 的等价物:它以 3D 体积或一系列 2D 帧(例如 CT 扫描中的切片)作为输入,3D CNN 是学习体积数据表示的强大模型。

设置

import os
import zipfile
import numpy as np
import tensorflow as tffrom tensorflow import keras
from tensorflow.keras import layers

这篇关于CT 扫描的 3D 图像分类-预测肺炎的存在的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285949

相关文章

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。