自动驾驶之—2D到3D升维

2023-10-26 21:30
文章标签 3d 自动 驾驶 2d 升维

本文主要是介绍自动驾驶之—2D到3D升维,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:
最近在学习自动驾驶方向的东西,简单整理一些学习笔记,学习过程中发现宝藏up 手写AI

  1. 3D卷积

3D卷积的作用:对于2DCNN,我们知道可以很好的处理单张图片中的信息,但是其对于视频这种由多帧图像组成的图片流,以及CT****等一些医学上的3维图像就会显得束手无策。因为2D卷积没有考虑到图像之间时间维度上的物体运动信息的变化(3维CT图像也可以近似看为是二维图像在时间上的变化)。因此,为了能够对视频(包括3维医学图像)信息进行特征提取,以便用来分类及分割任务,提出了3D卷积,在卷积核中加入时间维度。
在这里插入图片描述

  1. pytorch中对应函数介绍
class torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
说明:
参数kernel_size,stride,padding,dilation可以是一个int的数据 - 卷积height和width值相同,也可以是一个有三个int数据的tuple数组,tuple的第一维度表示depth的数值,tuple的第二维度表示height的数值,tuple的第三维度表示width的数值
Parameters:
in_channels(int) – 输入的通道数
out_channels(int) – 输出的通道数
kernel_size(int or tuple) - 卷积核的尺寸
stride(int or tuple, optional) - 卷积步长
padding(int or tuple, optional) - 边缘填充的像素个数
dilation(int or tuple, optional) – 卷积核元素之间的间距
groups(int, optional) – 卷积的组数
bias(bool, optional) - 如果bias=True,添加偏置

举个栗子:

# With square kernels and equal stride
m = nn.Conv3d(16, 33, 3, stride=2)
# non-square kernels and unequal stride and with padding
m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
input = autograd.Variable(torch.randn(20, 16, 10, 50, 100))
output = m(input)
  1. 3D卷积图示:

针对单通道,与2D卷积不同之处在于,输入图像多了一个 depth 维度,故输入大小为(1, depth, height, width),卷积核也多了一个k_d维度,因此卷积核在输入3D图像的空间维度(height和width维)和depth维度上均进行滑窗操作,每次滑窗与 (k_d, k_h, k_w) 窗口内的values进行相关操作,得到输出3D图像中的一个value.

针对多通道,输入大小为(3, depth, height, width),则与2D卷积的操作一样,每次滑窗与3个channels上的 (k_d, k_h, k_w) 窗口内的所有values进行相关操作,得到输出3D图像中的一个value。
在这里插入图片描述

  1. 立体视觉

2.1 原理简介

使用两个或多个从不同角度拍摄的2D图像来估计每个像素的深度,从而重建3D场景。.一般而言,立体视觉系统需要有两个(或者两个以上)摄像头的支持,也就正如人类的双眼一样。

2.2 单目视觉
在这里插入图片描述
O点为相机的光心,π是摄像头的成像平面。

从图中可以看出,如果P点与Q点在同一条直线上,那么他们在图像上的成像点就是同一个点,也就是 p ≡ q p \equiv q pq ,那么也就看不出来他们在距离上的差异(也就无法知道Q在前还是P在前)。

2.3 双目视觉

正是在发现了单目系统的缺陷之后,我们将系统由一个摄像头增加到两个摄像头,这样也就构成了一个立体系统。如果我们可以在两幅图像中找到对应点,我们就可以通过三角测量的方法来求得深度
在这里插入图片描述
从图中可以很明显的看出,在增加了一个摄像头之后,P与Q在目标面T上的成像不在位于同一个点,而是有自己分别的成像点,也就是 q ′ q^{'} q p ′ p^{'} p

那么,在我们给出了Reference与Target之后,我们应该如何解决参考面与目标面之间的对应关系呢?
在这里插入图片描述
这个时候,就需要对极约束(极线约束),对极约束意味着一旦我们知道了立体视觉系统的对极几何之后,对两幅图像间匹配特征的二维搜索就转变成了沿着极线的一维搜索。
在这里插入图片描述
图中黑色实线为R平面一条极线,绿色为T平面一条极线。给定一幅图像上的一个特征,它在另一幅图像上的匹配视图一定在对应的极线上(图中将P,Q视为特征,可以看到在T上的成像在绿色直线上)

通常我们使用的立体视觉系统都是比较标准的系统,如图所示:
在这里插入图片描述
一旦我们知道了对应点的搜索区域,就可以将其从2D降到1D,这样就形成了更加方便的立体视觉,对应点都被约束再同一条极线上,也就是图中的y直线。下面给出一个实际的示例(在理想情况下,我们希望两个摄像头的参数是完全一致的,并且两个相机的位置是平行的)。
在这里插入图片描述
2.4 视差和深度计算原理

在我们已经确保两个摄像头的参数是完全一致的,并且两者的位置是平行之后,我们的关注点就落到了如何计算物体的深度信息,这也是最重要最关键的地方。下面给出的是标准立体视觉系统下的计算原理。
在这里插入图片描述
假设 P P P 为空间中的一点, O R O_R OR为左边摄像头的光心, O T O_T OT为右边摄像头的光心,摄像头的焦距为 f f f(光心到成像平面的距离),成像平面在图中用粉色线表示, B B B表示两个摄像头光心之间的距离,也称为基线, P P P在左右两个摄像机成像平面上的成像点分别为 p p p p ′ p' p x R x_R xR x T x_T xT为成像点的水平方向距离(通常我们得到的是像素坐标系下的 x x x左边,其单位为像素,因此需要转换为实际的物理长度,涉及到坐标系转换问题), Z Z Z就是我们需要求的深度。

根据三角形相似定理( Δ P p p ′ \Delta Ppp' ΔPpp~ Δ P O R O T \Delta PO_RO_T ΔPOROT):

B Z = B − ( x R − x T ) Z − f \frac{B}{Z}=\frac{B-(x_R-x_T)}{Z-f} ZB=ZfB(xRxT)===> Z = B ⋅ f x R − x T = B ⋅ f D Z=\frac{B\cdot f}{x_R-x_T}=\frac{B\cdot f}{D} Z=xRxTBf=DBf

其中 D = x R − x T D = x_R-x_T D=xRxT 就是我们通常所说的视差(disparity)。

我们可以发现,深度Z是跟视差D成反比关系的,当视差D越小时,Z越大,物体离立体视觉系统也就越远, 当视差D越大,Z越小,物体离立体视觉系统也就越近。这一点和我们人眼系统是一样的,当我们观察离我们比较近的物体的时候,视差很大,可以获得的信息也就越多,当物体离我们很远的时候,视差很小,我们获得的信息也就很少了。

在图像处理中,我们通常用灰度值来表示视差信息,视差越大,其灰度值也就越大,在视差图像的视觉效果上表现出来就是图像越亮,物体离我们越远,其视差越小,灰度值也越小,视差图像也就越暗。

2.5 深度估计

  • 工作原理:使用深度学习模型来预测2D图像中每个像素的深度
  • 优势:可以从单个2D图像中获得3D深度信息
  • 应用:增强现实、虚拟现实、3D重建
  1. 3D到2D下采样

3.1

世界坐标系 —> 相机坐标系 —> 投影矩阵 —> 像素映射 —> 生成图片

  • 世界坐标系和相机坐标系转换可以通过dcm矩阵计算求出:
def dcm(origin: np.ndarray, target: np.ndarray):"""3 * 3 矩阵 ,{x,y,z}T 将origin坐标系转换到target坐标系的dcm旋转矩阵Args:origin:target:Returns:"""matrix = np.zeros((3, 3))for i in range(3):for j in range(3):matrix[i, j] = np.dot(target[i], origin[j])return matrix.T
  • 投影矩阵,可以参考pyrender.camera.py中的透视投影和正交投影矩阵,也可以根据自己的需求定制
  • 通过前两步计算出2d投影点,会落在(-1, 1)范围内,通过像素映射完成3d点到2d点的投影

完整代码:

class Camera:def __init__(self, scale, translation, resolution, znear=0.05, zfar=1000):self.scale = np.array(scale)  # 相机缩放self.translation = np.array(translation)  # 相机位移self.resolution = np.array(resolution)  # 2d 分辨率self.znear = znear  # 近平面self.h_s = self.resolution / 2  # h/2 w/2self.center = self.h_s  # 2d投影面中心点def camera_matrix(self):"""相机外参矩阵,世界坐标系转相机坐标系Returns:"""world = np.eye(3)camera = np.eye(3)camera[-1, -1] = -1matrix = np.eye(4)matrix[:3, :3] = dcm(world, camera)return matrixdef get_projection_matrix(self) -> np.ndarray:"""投影矩阵 业务定制Returns:"""P = np.eye(4)P[0, 0] = self.scale[0]P[1, 1] = self.scale[1]P[0, 3] = self.translation[0] * self.scale[0]P[1, 3] = -self.translation[1] * self.scale[1]P[2, 2] = -1return Pclass Render:def __init__(self, camera: Camera):self.camera = cameradef p_point(self, point: np.ndarray):"""投影点坐标Args:point: 点 4D 例如[0.5,0.5,0.5,1]  3d点需要填充1Returns:"""p = self.camera.get_projection_matrix().dot(self.camera.camera_matrix().dot(point)) p = p[:2] / p[-1] * self.camera.h_s * np.array([1, -1]) + self.camera.centerreturn p

3.2 2.5D表示

2D、2.5D和3D是描述物体和场景在空间中表示的三种方式,2D(平面)与3D(立体)又称为二维和三维,他们之间的区别是:2D你只能看到一个面,3D你能看到所有的面。

  • 定义:
    • 2D(二维):在2D中,物体或场景只有长度和宽度两个维度,常见的2D表示有图片、图画和屏幕上的图像
    • 2.5D(二点五维):介于2D和3D之间,它通常描述的是一个场景从特定角度的深度信息,一个2.5D图像(例如深度图)为每个像素提供了一个深度值。
    • 3D(三维):3D表示考虑了长度、宽度和深度,它为场景中的每个点提供了完整的三维坐标,常见的3D表示包括3D模型、点云等。
  • 区别:
    • 维度和信息完整性:2D缺乏深度信息;2.5D提供了从某个视角的深度信息;3D提供了完整的三维坐标信息。
    • 视角依赖性:2.5D通常与特定的视角相关,而3D表示是视角无关的
    • 数据复杂性:2D数据最简单,只需要x和y坐标;2.5D需要x、y和深度;3D需要x、y和z三个坐标。
  • 联系:
    • 从2D到2.5D: 如果你有一个2D图像和与之相关的深度信息,你可以得到一个2.5D表示。例如,使用深度相机如Kinect可以得到深度图。
    • 从2D到3D: 通过多个2D图像和某种形式的结构从运动或立体视觉,你可以重建出3D场景或物体。但这比从2.5D到3D更为复杂。
    • 从2.5D到3D: 从深度图中可以重建3D信息,例如生成一个点云。但由于2.5D信息通常是从一个视角获得的,因此可能不能完全恢复物体或场景的所有3D信息。
    • 简而言之,2D、2.5D和3D代表了逐渐增加的空间信息和复杂性。2.5D是一个中间表示,提供了比2D更多的深度信息,但没有3D那么完整。
  • 2D与2.5D的关系可以看成X轴与Y轴旋转了指定的角度后形成的新的屏幕
    • 坐标旋转算法:

    • 在这里插入图片描述

    • 根据三角函数公式:

    • sin ⁡ ( A + B ) = sin ⁡ A ∗ cos ⁡ B + sin ⁡ B ∗ cos ⁡ A \sin(A+B) = \sin A * \cos B + \sin B * \cos A sin(A+B)=sinAcosB+sinBcosA

    • cos ⁡ ( A + B ) = cos ⁡ A ∗ cos ⁡ B − sin ⁡ A ∗ sin ⁡ B \cos(A+B)=\cos A * \cos B - \sin A * \sin B cos(A+B)=cosAcosBsinAsinB

    • 线段由 B O BO BO转到 A O AO AO,旋转后的坐标计算公式如下:

    • ( x , y ) [ c o s θ s i n θ − s i n θ c o s θ ] = ( x ∗ c o s θ − y ∗ s i n θ , x ∗ s i n θ + y ∗ c o s θ ) (x,y) \left[ \begin{matrix} cos\theta &sin\theta \\ -sin\theta & cos\theta \end{matrix} \right]=(x*cos\theta-y*sin\theta, x*sin\theta+y*cos\theta) (x,y)[cosθsinθsinθcosθ]=(xcosθysinθ,xsinθ+ycosθ)

通过矩阵的知识可以知道,X轴的基向量为[1,0];Y轴的基向量为[0,1]。有X和Y轴基向量组成的矩阵是一个单位矩阵。所以常规的平面直角坐标系的任何一点可以表示为:

( x , y ) [ 1 0 0 1 ] = ( x 1 , y 1 ) (x,y)\left[ \begin{matrix} 1 &0 \\ 0 & 1 \end{matrix} \right]=(x1, y1) (x,y)[1001]=(x1,y1)

为了将2D坐标映射到2.5D坐标,需要定义2.5D坐标系统使用的基向量。因为2.5D坐标系实际上是通过旋转X与Y轴实现的,所以通过旋转算法和上面的单位矩阵,可以得到新坐标系的X和Y轴基向量:

[ 1 0 0 1 ] [ c o s θ s i n θ − s i n α c o s α ] = [ c o s θ s i n θ − s i n α c o s α ] \left[ \begin{matrix} 1 &0 \\ 0 & 1 \end{matrix} \right]\left[ \begin{matrix} cos\theta &sin\theta \\ -sin\alpha & cos\alpha \end{matrix} \right]=\left[ \begin{matrix} cos\theta &sin\theta \\ -sin\alpha & cos\alpha \end{matrix} \right] [1001][cosθsinαsinθcosα]=[cosθsinαsinθcosα]

可以看出,将2D坐标系中的基向量转换为2.5D坐标系统的基向量时,结果其实就是旋转矩阵本身,这个旋转矩阵就是2.5D坐标系中的X和Y轴基向量。

注意:这里分别使用θ和α,是因为X和Y轴可以旋转不同的角度。如果 θ+α=90度,那么Sin(α)=Cos( θ );Cos(α)=Sin( θ )。上面的矩阵可以被替换为:

[ c o s θ s i n θ − c o s θ s i n θ ] \left[ \begin{matrix} cos\theta &sin\theta \\ -cos\theta & sin\theta \end{matrix} \right] [cosθcosθsinθsinθ]

现在定义2D坐标系为W(x,y),2.5D坐标系为G(x,y)。2D坐标系的X轴相对于2.5D坐标系X轴顺时针旋转30°,Y轴旋转60°。通过上面的公式可以得到W(x,y)对应的G(x,y):

G x = ( W x − W y ) ∗ c o s θ G_x = (W_x-W_y) * cos\theta Gx=(WxWy)cosθ

G y = ( W x + W y ) ∗ s i n θ G_y = (W_x+W_y) * sin\theta Gy=(Wx+Wy)sinθ

2.5D坐标只需利用上面的工作进行逆运算就能得到:

W x = ( G x ∗ s i n θ + G y ∗ c o s θ ) / 2 ∗ s i n θ ∗ c o s θ W_x = (G_x*sin\theta+G_y*cos\theta)/2*sin\theta*cos\theta Wx=(Gxsinθ+Gycosθ)/2sinθcosθ

W y = ( G y ∗ c o s θ − G x ∗ s i n θ ) / 2 ∗ s i n θ ∗ c o s θ W_y = (G_y*cos\theta-G_x*sin\theta)/2*sin\theta*cos\theta Wy=(GycosθGxsinθ)/2sinθcosθ

  1. 混合方法

4.1 多视图网络

  • 工作原理:使用从不同角度的多个2D视图的信息来提取3D特征。
  • 应用:3D物体识别、3D重建。
  • 优点:能够从不同的2D视图中捕获3D信息。

4.2 融合2D和3D特征

  • 工作原理:将2D图像特征与3D数据特征(例如点云)结合起来。
  • 应用:3D物体检测、场景分割。
  • 优点:利用了2D图像和3D结构的强大信息。

这篇关于自动驾驶之—2D到3D升维的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285792

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

Shell脚本实现自动登录服务器

1.登录脚本 login_server.sh #!/bin/bash# ReferenceLink:https://yq.aliyun.com/articles/516347#show all host infos of serverList.txtif [[ -f ./serverList.txt ]]thenhostNum=`cat ./serverList.txt | wc -l`e

Jenkins 通过 Version Number Plugin 自动生成和管理构建的版本号

步骤 1:安装 Version Number Plugin 登录 Jenkins 的管理界面。进入 “Manage Jenkins” -> “Manage Plugins”。在 “Available” 选项卡中搜索 “Version Number Plugin”。选中并安装插件,完成后可能需要重启 Jenkins。 步骤 2:配置版本号生成 打开项目配置页面。在下方找到 “Build Env

Matter.js:Web开发者的2D物理引擎

Matter.js:Web开发者的2D物理引擎 前言 在现代网页开发中,交互性和动态效果是提升用户体验的关键因素。 Matter.js,一个专为网页设计的2D物理引擎,为开发者提供了一种简单而强大的方式,来实现复杂的物理交互效果。 无论是模拟重力、碰撞还是复杂的物体运动,Matter.js 都能轻松应对。 本文将带你深入了解 Matter.js ,并提供实际的代码示例,让你一窥其强大功能

以后写代码都是AI自动写了,Cursor+Claude-3.5-Sonnet,Karpathy 点赞的 AI 代码神器。如何使用详细教程

Cursor 情况简介 AI 大神 Andrej Karpathy 都被震惊了!他最近在试用 VS Code Cursor +Claude Sonnet 3.5,结果发现这玩意儿比 GitHub Copilot 还好用! Cursor 在短短时间内迅速成为程序员群体的顶流神器,其背后的原因在于其默认使用 OpenAI 投资的 Claude-3.5-Sonnet 模型,这一举动不仅改变了代码生成

PRN(20201231):驾驶人驾驶决策机制遵循最小作用量原理

王建强, 郑讯佳, 黄荷叶. 驾驶人驾驶决策机制遵循最小作用量原理[J]. 中国公路学报, 2020, v.33;No.200(04):159-172. 观点: 为提升智能汽车的自主决策能力,使其能够学习人的决策智慧以适应复杂多变的道路交通环境,需要揭示驾驶人决策机制。 依据: 物理学中常用最小作用量原理解释自然界(包括物理和生物行为)极值现象。同时,最小作用量原理还用于解释蚂蚁在觅