图像语义分割 pytorch复现DeepLab v1图像分割网络以及网络详解(骨干网络基于VGG16)

2023-10-25 19:45

本文主要是介绍图像语义分割 pytorch复现DeepLab v1图像分割网络以及网络详解(骨干网络基于VGG16),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像语义分割 pytorch复现DeepLab v1图像分割网络以及网络详解(骨干网络基于VGG16)

  • 背景介绍
  • 2、 网络结构详解
    • 2.1 LarFOV效果分析
  • 2.2 DeepLab v1-LargeFOV 模型架构
  • 2.3 MSc(Multi-Scale,多尺度(预测))
  • 2.3 以VGG16为特征提取骨干网络代码
  • pytorch实现网络结构项目

背景介绍

论文名称:Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

在这里插入图片描述

  • 2014 年发表于 CVPR
  • DeepLab v1 是一种用于语义分割的卷积神经网络模型,其核心思想是结合了全局上下文信息,以更好地理解图像中的语义内容。

论文中指出了当前图像语义分割的存在问题:

  • 下采样会导致图像的分辨率降低
    在 DCNN 中,通常通过池化层来进行信号下采样,这是为了减少特征图的尺寸和参数数量。然而,池化操作会导致特征图的空间分辨率降低,从而损失了一部分细节信息。在图像标注任务中,像素级的细节信息对于准确的标注非常重要,因此信号下采样可能会影响标注的质量。
    在这里插入图片描述
  • 空间不敏感
    DCNNs 在高级视觉任务中表现出色的一个原因是它们具有一定程度的平移、旋转、缩放等空间不变性。然而,对于像素级标注任务(如语义分割或像素级分类),我们希望网络能够对每个像素点进行精细的标注,这就需要网络具有较高的空间敏感性。然而,DCNNs 的不变性特性可能导致在特征提取过程中丢失一些空间信息,使得网络对于像素级标注任务不够敏感。

论文中解决以上两个问题的方案:
在这里插入图片描述

  • 1、采用空洞卷积
  • 2、采用fully-connected CRF(Condition Random Fie)(全连接条件随机场)
    CRF在语义分割领域是常用的方法,但是在DeepLab V3之后便不再使用

网络优势:

  • 速度更快,论文中说因为采用了膨胀卷积的原因,但fully-connect CRF很耗时
  • 准确率更高,相比之前最好的网络,提升了7.2个点
  • 结构简单,主要采用DCNN和CRFs级联构成在这里插入图片描述
    DeepLab:本文提出的语义分割模型
    MSc:Multi-Scale,多尺度
    CRF:全连接条件随机场,用于对图像进行后处理以改善分割或标注的结果。它通常用于在图像分割任务中对神经网络的输出进行精炼和优化
    LargeFOV:空洞卷积

2、 网络结构详解

DeepLab v1 的 Backbone 使用的是 VGG16作为主要的卷积神经网络架构(2014年最牛逼的分类网络为VGG)。在 DeepLab v1 中,VGG16 的部分或全部全连接层被去除,而只保留卷积层,并通过空洞卷积(Atrous Convolution)来增大感受野,从而实现对图像的全局上下文信息的捕获

VGG16 的结构包含 16 层卷积层和全连接层,其中包括 13 个卷积层和 3 个全连接层。该模型在 ImageNet 数据集上进行了训练,并在图像分类任务上取得了很好的性能。

2.1 LarFOV效果分析

在这里插入图片描述
将卷积核减小,比如从原来的 kernel_size = (7, 7) 变为 kernel_size = (4, 4) 或 kernel_size = (3, 3)
在这里插入图片描述

注意❗️

  • 这里替换全连接层的卷积层并非普通卷积层,而是一个膨胀卷积,它有一个膨胀系数 r,可以扩大感受野。
  • 图中的 input stride 其实是膨胀系数 r。

在这里插入图片描述

2.2 DeepLab v1-LargeFOV 模型架构

VGG系列网络结构:
在这里插入图片描述
DeepLab-LargeFOV 模型架构:
在这里插入图片描述

经过上采样得到 224 × 224 × num class的特征图并非模型最终输出结果,还要经过一个 Softmax 层后才是模型最终的输出结果。

Softmax 层的作用是将每个像素的类别预测转换为对应类别的概率。它会对每个像素的 num_classes 个类别预测进行归一化,使得每个预测值都落在 0 到 1 之间,并且所有类别的预测概率之和为 1。这样,对于每个像素点,我们可以得到每个类别的概率,从而确定该像素属于哪个类别的概率最大。最终的输出结果通常是经过 Softmax 处理后的特征图,其中每个像素点都包含了 num_classes 个类别的概率信息。

LargeFOV 本质上就是使用了膨胀卷积。

  • 通过分析发现虽然 Backbone 是 VGG-16 但使用 Maxpool 略有不同,VGG 论文中是 kernel=2,stride=2,但在 DeepLab v1 中是 kernel=3,stride=2,padding=1。接着就是最后两个 Maxpool 层的 stride 全部设置成了 1(这样下采样的倍率就从原来的 32 变成了 8)。最后三个 3 × 3 的卷积层采用了膨胀卷积,膨胀系数 r = 2。
  • 然后关于将全连接层卷积化过程中,对于第一个全连接层(FC1)在 FCN 网络中是直接转换成卷积核大小为 7 × 7,卷积核个数为 4096 的卷积层(普通卷积),但在 DeepLab v1 中作者说是对参数进行了下采样最终得到的是卷积核大小 3 × 3 ,卷积核个数为 1024 的卷积层(膨胀卷积)(这样不仅可以减少参数还可以减少计算量,详情可以看下论文中的 Table2),对于第二个全连接层(FC2)卷积核个数也由 4096 4096 采样成 1024(普通卷积)。
  • 将 FC1 卷积化后,还设置了膨胀系数(膨胀卷积),论文 3.1 中说的是 r = 4 但在 Experimental Evaluation 中 Large of View 章节里设置的是 r = 12 对应 LargeFOV。对于 FC2 卷积化后就是卷积核 1 × 1 ,卷积核个数为 1024 的普通卷积层。接着再通过一个卷积核 1 × 1 ,卷积核个数为 num_classes(包含背景)的普通卷积层。最后通过 8 倍上采样还原回原图大小。

注意❗️采用的是双线性插值(Bilinear Interpolation)的策略来实现上采样,双线性插值会考虑其周围 4 个最近的像素点根据距离权重进行插值计算。这样可以有效地将特征图还原到原始输入图像的大小,使得网络的输出和输入在空间尺寸上保持一致

2.3 MSc(Multi-Scale,多尺度(预测))

即融合多个特征层的输出
DeepLab-LargeFOV-MSc 模型架构
在这里插入图片描述

2.3 以VGG16为特征提取骨干网络代码

DeepLab-LargeFOV

#!/usr/bin/python
# -*- encoding: utf-8 -*-import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F斜体样式
class DeepLabLargeFOV(nn.Module):def __init__(self, in_dim, out_dim, *args, **kwargs):super(DeepLabLargeFOV, self).__init__(*args, **kwargs)# vgg16 = torchvision.models.vgg16()layers = []layers.append(nn.Conv2d(in_dim, 64, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 2, padding = 1))layers.append(nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 2, padding = 1))layers.append(nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 2, padding = 1))layers.append(nn.Conv2d(256, 512, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 1, padding = 1))# 以下采用膨胀卷积layers.append(nn.Conv2d(512,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 1, padding = 1))self.features = nn.Sequential(*layers)classifier = []classifier.append(nn.AvgPool2d(3, stride = 1, padding = 1))classifier.append(nn.Conv2d(512,1024,kernel_size = 3,stride = 1,padding = 12,dilation = 12))classifier.append(nn.ReLU(inplace=True))classifier.append(nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0))classifier.append(nn.ReLU(inplace=True))classifier.append(nn.Dropout(p=0.5))classifier.append(nn.Conv2d(1024, out_dim, kernel_size=1))self.classifier = nn.Sequential(*classifier)self.init_weights()def forward(self, x):N, C, H, W = x.size()x = self.features(x)x = self.classifier(x)x = F.interpolate(x, (H, W), mode='bilinear', align_corners=True)return xdef init_weights(self):vgg = torchvision.models.vgg16(pretrained=True)state_vgg = vgg.features.state_dict()self.features.load_state_dict(state_vgg)for ly in self.classifier.children():if isinstance(ly, nn.Conv2d):nn.init.kaiming_normal_(ly.weight, a=1)nn.init.constant_(ly.bias, 0)if __name__ == "__main__":net = DeepLabLargeFOV(3, 10)in_ten = torch.randn(1, 3, 224, 224)out = net(in_ten)print(out.size())in_ten = torch.randn(1, 3, 64, 64)mod = nn.Conv2d(3,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2)out = mod(in_ten)print(out.shape)import osimport torchfrom torchsummary import summaryos.environ["CUDA_VISIBLE_DEVICES"] = "1"device = torch.device("cuda" if torch.cuda.is_available() else "cpu")net=DeepLabLargeFOV(3,21).to(device)print(summary(net,(3,224,224)))print(torch.cuda.current_device())

pytorch实现网络结构项目

项目源代码下载地址
目录结构:
在这里插入图片描述
1、下载数据集,并将数据集存储在以下目录
在这里插入图片描述
2、执行代码:

python train.py --cfg config/pascal_voc_2012_multi_scale.py

这篇关于图像语义分割 pytorch复现DeepLab v1图像分割网络以及网络详解(骨干网络基于VGG16)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/284805

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J