pandas 分组统计 列联表pd.crosstab()

2023-10-25 14:20

本文主要是介绍pandas 分组统计 列联表pd.crosstab(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pandas分组的统计方式

 

index减肥方式血压含量
0药物
1饮食
2锻炼正常
3抽脂
4药物
5抽脂
...  
498药物
499饮食

我们需要统计多个字段的次数:

如下表数据:

减肥方式

\血压含量

药物饮食锻炼抽脂总和
50383830156
正常46404045171
37443755173
总和133122115130500

通常多个组的统计可以采用DataFrame.groupby(by=['减肥方式','血压含量'])['减肥方式'].count().reset_index(name='次数')

                                                                              

这里我们能看到我们采用分组统计之后,能详细看到表格的统计,但是却不利于开发的统计

附下,采用分组统计的方式

def list_set(list_1):list_2 = list(set(list_1))list_2.sort(key=list_1.index)return list_2def func(df,df_title_X,df_title_Y):df_data = df.groupby(by=[df_title_X,df_title_Y])[df_title_X].count().reset_index(name='次数')data_dict = {}for i in df_data[df_data.columns[0]]:data_dict[i] = {}for a in df_data[df_data.columns[1]]:data_dict[i][a] = {}for i in range(df_data.shape[0]):data_dict[df_data[df_data.columns[0]].loc[i]][df_data[df_data.columns[1]].loc[i]] = df_data[df_data.columns[2]].loc[i]l = [list(i.values()) for i in data_dict.values()]return pd.DataFrame(np.array(l).T,columns=list_set(df_data[df_title_X].to_list()),index=list_set(df_data[df_title_X].to_list()))print(func(df,'减肥方式','血压含量'))

                                          结果如下:

                                                              

在查阅pandas的官方文档之后,我们了解到了这种叫做列联表,pandas.crosstab()的函数

import pandas as pd
pd.crosstab()

 

print(pd.crosstab(df['血压含量'],df['减肥方式'],margins=True,margins_name='总和'))
print(pd.crosstab(df['血压含量'],df['减肥方式'],margins=True,margins_name='总和').to_dict())

                                              

                                          

后续还有透视表pandas.pivot_table(),就自行查看pandas的官方文档。

这篇关于pandas 分组统计 列联表pd.crosstab()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/283155

相关文章

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav