PaddleX场景实战:PP-TS在电压预测场景上的应用

2023-10-25 13:30

本文主要是介绍PaddleX场景实战:PP-TS在电压预测场景上的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间序列是按照时间发生的先后顺序进行排列的数据点序列,简称时序。时间序列预测即运用历史的多维数据进行统计分析,推测出事物未来的发展趋势。时间序列预测是最常见的时序问题之一,在很多行业都有其应用,且通常时序预测效果对业务有着重大影响。例如:

  • 零售企业: 预测产品销量,可以为企业备货、配送、运营策略的制定提供有效依据,显著降本增效;
  • 电网公司: 预测发电量与用电量,可以使电网的调度更加合理化,发挥最大效能;
  • 制造企业: 提前预测生产设备可能发生的故障,可以提前预警、维修,降低停工造成的损失;
  • 新能源车企: 实时预测电池剩余电量、预测剩余寿命,可以更经济、更合理的使用车辆;
  • 金融领域: 利率、股票、现金流、外汇等走势预测都对经济产生重大影响。

为加快企业智能化转型进程,降低时序技术应用门槛,飞桨持续进行产品技术打磨,推出了基于启发式搜索和集成学习的高精度时序模型PP-TS,在电力场景数据集上经过验证,精度提升超20%。PP-TS目前已正式上线飞桨AI套件PaddleX,源码全部开放!您可以在AI Studio(星河社区)云端或者PaddleX本地端尽情探索,灵活选择工具箱或开发者模式,尝试结合到真实的业务场景中去。

注:在工具箱模式中,您只需提供一个场景下的历史数据,PP-TS就能为您准确预测出该场景下未来一段时间内的数据情况。除PP-TS外,飞桨也提供了8种业界领先的时序预测方法,即TimesNet, TiDE, PatchTST, DLinear, RLinear, NLinear, Nonstationary Transformer和XGBoost以便您对比使用。

精彩直播预告

为了让广大开发者和企业更详细了解以及便捷地应用PP-TS,百度高级工程师孙婷将于10月25日(周三)20:30为大家带来一期精品课程,深度解析时间序列预测技术和适用场景,更有基于PaddleX中高精度PP-TS模型完成电压时序预测的实战教学。未来,我们也将持续为广大开发者和企业带来飞桨AI套件PaddleX中精选模型技术详解与场景范例,敬请期待!

关注「飞桨PaddlePaddle」,获取更多直播最新动态~

基于PaddleX的时序预测项目实战教学

图片

PP-TS整体介绍

随着5G时代的到来,企业逐步进入数字化转型新阶段,面临越来越多复杂时间序列预测场景,如设备剩余寿命预测、电力负荷预测等。在复杂时序预测场景下,长时序、多变量、非平稳等特性严重影响模型预测的精度,对时序预测任务提出了更高的要求。因此我们基于启发式搜索和集成方法研发的时序预测模型PP-TS,能够根据不同场景自适应的选择模型,并通过模型融合助力预测更加准确。 整体的技术框架图,如下图所示:

图片

PP-TS主要从三个角度进行了深入探索,主要包括:

  • 基础单模型: 深度模型一般拟合能力强,Transformer-based方法善于捕捉长期依赖,而机器学习方法具有更好的可解释性,PP-TS选择了前沿深度模型和传统方法的结合,包含TimesNet, TiDE, PatchTST, DLinear, RLinear, NLinear, Nonstationary Transformer和XGBoost。
  • 启发式搜索: 将单模型是否被选择建模成0/1问题,通过遗传算法,对选择的组合进行精度评估,通过选择交叉变异进化,筛选最优组合。
  • 模型集成: 将被选择的模型进行集成,结果融合,得到精度最佳的方法。

如何创建PP-TS模型产线

飞桨AI套件PaddleX已上线飞桨AI Studio星河社区,大家可通过项目大厅进入到PaddleX官网,在精选模型库中选择PP-TS,创建属于你自己的PP-TS模型产线。

  • 飞桨AI Studio星河社区官网:飞桨AI Studio星河社区-人工智能学习与实训社区
加入星河共创计划 成为文心生态伙伴

除了可以更便捷地开发AI模型和应用外,星河共创计划为企业提供了企业扶植和商业收益的机会。

1.有意向基于文心大模型(ERNIE Bot SDK、文心一言等)共创应用和插件,可以获取百亿流量、项目奖金等福利。

2.基于文心大模型和PaddleX(飞桨AI套件)共创应用上线至星河社区,可以拟定应用价格,开放给其他用户购买,获得应用收入分成。

通过星河共创计划,成为文心生态伙伴,助力企业快速实现行业痛点解决、大模型业务落地、客户拓展和商业收入。我们期待与您携手,发掘更多经典场景案例!

相关地址直达:

1.飞桨AI套件PaddleX中的PP-TS:

PP-TS - 飞桨AI Studio星河社区

2.PaddleX官网:

飞桨AI Studio星河社区-人工智能学习与实训社区

3.PaddleX官方频道:

飞桨AI Studio星河社区-人工智能学习与实训社区

4.PaddleX共创方案:

https://ai.baidu.com/ai-doc/AISTUDIO/pll1ysj35

5.PaddleX使用文档:

https://ai.baidu.com/ai-doc/AISTUDIO/Zlisojzjs

这篇关于PaddleX场景实战:PP-TS在电压预测场景上的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282866

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle