在docker环境下从头搭建openvslam/orb_slam3的流程记录以及问题总结

本文主要是介绍在docker环境下从头搭建openvslam/orb_slam3的流程记录以及问题总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 前言
    • 1. MobaXterm软件
    • 2. docker操作
      • 2.1. 拉一个ubuntu镜像
      • 2.2. 修改名字(可选)
      • 2.3. 删除之前的docker镜像(可选)
    • 3. openvslam搭建流程
      • 3.1. 起容器
      • 3.2. 前置包的安装
      • 3.3. 安装Eigen
      • 3.4. 安装opencv
      • 3.5. 安装DBoW2
      • 3.6. 安装g2o
      • 3.7. 安装Pangolin库
      • 3.8. 安装yaml-cpp (可选)
      • 3.9. 安装openvslam
      • 3.10. 安装openssh
      • 3.11. MobaXterm软件远程连接容器
      • 3.12. 运行demo
    • 4. orb_slam3搭建流程
      • 4. 1. 起容器
      • 4.2. 前置包的安装
      • 4.3. 安装Eigen
      • 4.4. 安装opencv
      • 4.5. 安装Pangolin库
      • 4.6. 安装bosst库
      • 4.7. 安装DBoW2
      • 4.8. 安装g2o
      • 4.9. 安装Sophus
      • 4.10. 解压ORBvoc.txt.tar.gz压缩包
      • 4.11. 安装orb_slam3
      • 4.12. 安装openssh
      • 4.13. MobaXterm软件远程连接容器
      • 4.14. 运行demo
    • 5. 编译问题
      • 5.1 MobaXterm相关问题
        • 5.1.1 问题1:报错显示 “xclock command not found”:
        • 5.1.2 问题2:报错显示 "Error: Can't open this Distplay"
        • 5.1.3 问题3:报错显示 "error: XDG RUNTIME DIR not set in environment"
      • 5.2 编译问题
        • 5.2.1 问题1:报错显示 "No rule to make target '/usr/lib/x86_64-linux-gnu/libjpeg.so', needed by 'src/libpangolin.so'. Stop"
        • 5.2.2 问题2:报错显示 "fatal error: openssl/md5.h: No such file or directory"
        • 5.2.3 问题3:报错显示 "cannot find -lboost_serialization"
      • 5.3. 之前遇到的编译问题
        • 5.3.1 问题1:报错显示 "Could not find the following static Boost libraries"
        • 5.3.2 问题2:报错显示 "/usr/bin/ld: cannot find -lboost_system-mt"
        • 5.3.3 问题3:报错显示 "//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `__cudaRegisterFatBinary@libcudart.so.11.0"
        • 5.3.4 问题4:报错显示 "//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `ilGetIntege"
        • 5.3.5 问题5:报错显示 "//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `std::__cxx11::basic_ostringstream<char, std::char_traits<char>, std::allocator<char> >::basic_ostringstream()@GLIBCXX_3.4.26"
        • 5.3.6 问题6:报错显示 "//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `log@GLIBC_2.29"
        • 5.3.7 问题7:报错显示 "apt-file not found"
        • 5.3.8 问题8:报错显示 "ld.so.conf: No such file or directory"

0. 前言

最近基于公司的需求,开始搭建Slam算法。在搭建Slam算法的过程中,我遇到了很多问题。为了方便后续的重复部署以及给读者朋友做一个参考,因此,我记录了在服务器上通过docker搭建openvslam以及orb_slam3的全部过程,并且整理了遇到的编译问题。


本文主要内容如下:
第一部分:MobaXterm软件
第二部分:docker操作
第三部分:openvslam搭建流程
第四部分:orb_slam3搭建流程
第五部分:编译问题


参考博客:

  1. github:zm0612,名称:openvslam-comments
  2. 作者:一点儿也不萌的萌萌,开源SLAM框架学习——OpenVSLAM源码解析: 第一节 安装和初探
  3. openvslam论文链接
  4. github:UZ-SLAMLab,名称:ORB_SLAM3
  5. 作者:抓饼先生,Boost笔记 1:下载、编译、安装、测试
  6. How to fix: fatal error: openssl/opensslv.h: No such file or directory in RedHat 7
  7. 在Ubuntu上安装C++库
  8. 【视频开发】【计算机视觉】doppia编译之四:安装其他库、编译和运行doppia
  9. 运行应用程序时出现GLIBCXX_3.4.26not found问题
  10. wsl2中安装QGC

1. MobaXterm软件

本次部署因为是在远程服务器上,无法在命令行窗口显示Slam的定位和建图过程。因此,采用带有Xserver的MobaXterm软件。该软件可以通过Xserver服务来可视化服务器上的图形化窗口。

第一步,建立你的session:
在这里插入图片描述
第二步,测试可视化显示

输入xclock或者xeyes查看是否可以可视化显示:
在这里插入图片描述
在这里插入图片描述

在可视化窗口时,遇到问题可以查看第5章节中是否存在解决方法,如果依旧没有解决可以在评论区提出,我们一起解决。

2. docker操作

2.1. 拉一个ubuntu镜像

 sudo docker pull ubuntu:18.04

2.2. 修改名字(可选)

我个人喜欢把镜像重命名一下,方便管理。
注意:不是把原始镜像重命名,而是重新生成一个新的镜像

sudo docker tag f9a80a55f492 liyi_cpp:1.0
# f9a80a55f492 是ubuntu:18.04的镜像编号。
# liyi_cpp:1.0是重命名的名字和版本号。

2.3. 删除之前的docker镜像(可选)

sudo docker rmi ubuntu:18.04

3. openvslam搭建流程

OpenvSlam的官方仓库已经关闭,但是github作者:zm0612 已经fork下来可以继续进行安装。

该作者还有一个csdn的博客进行安装说明,我就是参考的这个博主的内容进行整理的。
读者朋友也可以参考这个博主的文章:
作者:一点儿也不萌的萌萌,开源SLAM框架学习——OpenVSLAM源码解析: 第一节 安装和初探

openvslam的环境包含以下安装包:

  • Eigen:用于矩阵运算。
  • g2o: 用于优化基于图的非线性误差函数。
  • SuiteSparse: 一组与稀疏矩阵相关的包。
  • DBoW2:用于图像检索的词袋图像数据库。
  • yaml-cpp:yaml文件管理的包。(可选)
  • OpenCV:数字图像处理的包。
  • Pangolin:用于可视化显示的包。

这些包我已经提前下好了,放在百度云中,读者朋友可以自行下载

链接:https://pan.baidu.com/s/1wT95r1iJFwyVg8vhPbcGtQ
提取码:1234

3.1. 起容器

基于之前拉取的镜像,起一个容器。

sudo docker run --name openvslam -v /media/DATA/liyi/project/vscode:/data -p 6790:22 --gpus=all -it liyi_cpp:1.0 /bin/bash
# --name 后面是容器名字
# -v 指的是本地目录和容器目录的映射关系
# -p 指的是容器开放的端口的映射
# --gpus 指的是容器可以调用nvidia的gpu。all指的是全部的显卡
# -it 后面跟着镜像的名字和版本号

3.2. 前置包的安装

基于基础使用以及依赖库,需要提前安装一些包。代码如下:

sudo apt update -y
apt upgrade -y --no-install-recommends
# basic dependencies
apt install -y build-essential pkg-config cmake git wget curl unzip vim
# g2o dependencies
apt install -y libatlas-base-dev libsuitesparse-dev
# OpenCV dependencies
apt install -y libgtk-3-dev
apt install -y ffmpeg
apt install -y libavcodec-dev libavformat-dev libavutil-dev libswscale-dev libavresample-dev
# eigen dependencies
apt install -y gfortran
# other dependencies
apt install -y libyaml-cpp-dev libgoogle-glog-dev libgflags-dev
# (if you plan on using PangolinViewer)
# Pangolin dependencies
apt install -y libglew-dev
# 用来读取jpeg图像的包。
apt install -y libjpeg

3.3. 安装Eigen

cd /path/to/working/dir(工作路径)
# 版本也可以自己指定。eigen也可以通过我的百度云离线下载好,自己解压。
wget -q http://bitbucket.org/eigen/eigen/get/3.3.4.tar.bz2
tar xf 3.3.4.tar.bz2
rm -rf 3.3.4.tar.bz2
cd eigen-eigen-5a0156e40feb
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

安装好后,include文件和lib文件,分别在/usr/local/include和/usr/local/lib下。
在这里插入图片描述

3.4. 安装opencv

cd /path/to/working/dir
# 版本也可以自己指定。
wget -q https://github.com/opencv/opencv/archive/3.4.0.zip
unzip -q 3.4.0.zip
rm -rf 3.4.0.zip
cd opencv-3.4.0
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local -DENABLE_CXX11=ON -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_JASPER=OFF -DBUILD_OPENEXR=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_EIGEN=ON -DWITH_FFMPEG=ON -DWITH_OPENMP=ON ..
make -j4
sudo make install

安装好后,include文件和lib文件,分别在/usr/local/include和/usr/local/lib下。
在这里插入图片描述

3.5. 安装DBoW2

cd /path/to/working/dir
git clone https://github.com/shinsumicco/DBoW2.git
cd DBoW2
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

安装好后,include文件和lib文件,分别在/usr/local/include和/usr/local/lib下。
在这里插入图片描述

3.6. 安装g2o

cd /path/to/working/dir
# 可以自己在github上体现下载好。
git clone https://github.com/RainerKuemmerle/g2o.git
cd g2o
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local -DCMAKE_CXX_FLAGS=-std=c++11 -DBUILD_SHARED_LIBS=ON -DBUILD_UNITTESTS=OFF -DBUILD_WITH_MARCH_NATIVE=ON -DG2O_USE_CHOLMOD=OFF -DG2O_USE_CSPARSE=ON -DG2O_USE_OPENGL=OFF -DG2O_USE_OPENMP=ON ..
make -j4
sudo make install

安装好后,include文件和lib文件,分别在/usr/local/include和/usr/local/lib下。
在这里插入图片描述

3.7. 安装Pangolin库

cd /path/to/working/dir
git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin
git checkout ad8b5f83222291c51b4800d5a5873b0e90a0cf81
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

安装好后,include文件和lib文件,分别在/usr/local/include和/usr/local/lib下。
在这里插入图片描述

3.8. 安装yaml-cpp (可选)

执行以下命令:

git clone https://github.com/jbeder/yaml-cpp
cd yaml-cpp
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

3.9. 安装openvslam

DCMAKE_BUILD_TYPE可以根据需求选择Release或者Debug。

cd /path/to/openvslam
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_WITH_MARCH_NATIVE=ON -DUSE_PANGOLIN_VIEWER=ON -DUSE_SOCKET_PUBLISHER=OFF -DUSE_STACK_TRACE_LOGGER=ON -DBOW_FRAMEWORK=DBoW2 -DBUILD_TESTS=ON ..
make -j4

3.10. 安装openssh

#下载openssh
apt-get update
apt-get install openssh-server
# 设置root密码,然后设置两遍相同的密码,之后登陆的时候要用到
passwd
# 修改配置文件
apt-get install vim
vim /etc/ssh/sshd_config
# 注释掉 PermitRootLogin prohibit-password 这一行 添加这一行 PermitRootLogin yes 
# 5. 重启ssh服务
service ssh restart
# 或使用
# /etc/init.d/ssh restart# 本机连接ssh
# ssh -p 6789 root@0.0.0.0
# 远程访问服务器docker里正在运行的容器
# ssh -p 6790 root@192.168.2.83

3.11. MobaXterm软件远程连接容器

和之前的方法一样,配置远程服务器的会话。注意端口是起容器时设置的端口号,在上述例子中为6790。
在这里插入图片描述

在这里插入图片描述

3.12. 运行demo

cd slam编译所在位置/build
./run_euroc_slam -v /data/database/orb_vocab.dbow2 -d /data/database/EuRoC/V1_03_difficult/mav0 -c ../example/euroc/EuRoC_mono.yaml
# -v orb_vocab.dbow2的文件路径。可以在网上下载,或者通过我的百度云分享下载。
# -d 数据的所在路径
# -c 相机的配置文件

在这里插入图片描述

4. orb_slam3搭建流程

orb_slam3的github代码:github:UZ-SLAMLab,名称:ORB_SLAM3

orb_slam不用自己找第三方库,代码里面就自带各种三方库。(缺一个boost_1_83_0,需要自己下载。)
在这里插入图片描述

openvslam的环境包含以下安装包:

  • Eigen:用于矩阵运算。
  • g2o: 用于优化基于图的非线性误差函数。
  • Sophus: 这是一个李群的c++实现,通常用于二维和三维几何问题(即计算机视觉或机器人应用)。
  • DBoW2:用于图像检索的词袋图像数据库。
  • OpenCV:数字图像处理的包。
  • Pangolin:用于可视化显示的包。
  • boost:Boost库是为C++语言标准库提供扩展的一些C++程序库的总称。

搭建流程如下:

4. 1. 起容器

sudo docker run --name orb_slam3 -v /media/DATA/liyi/project/vscode:/data -p 6788:22 --gpus=all -it liyi_cpp:1.0 /bin/bash
# --name 后面是容器名字
# -v 指的是本地目录和容器目录的映射关系
# -p 指的是容器开放的端口的映射
# --gpus 指的是容器可以调用nvidia的gpu。all指的是全部的显卡
# -it 后面跟着镜像的名字和版本号

4.2. 前置包的安装

基于基础使用以及依赖库,需要提前安装一些包。代码如下:

sudo apt update -y
apt upgrade -y --no-install-recommends
# basic dependencies
apt install -y build-essential pkg-config cmake git wget curl unzip vim
# g2o dependencies
apt install -y libatlas-base-dev libsuitesparse-dev
# OpenCV dependencies
apt install -y libgtk-3-dev
apt install -y ffmpeg
apt install -y libavcodec-dev libavformat-dev libavutil-dev libswscale-dev libavresample-dev
# eigen dependencies
apt install -y gfortran
# other dependencies
apt install -y libyaml-cpp-dev libgoogle-glog-dev libgflags-dev
# (if you plan on using PangolinViewer)
# Pangolin dependencies
apt install -y libglew-dev
# 用来读取jpeg图像的包。
apt install -y libjpeg

4.3. 安装Eigen

cd orb_slam3代码所在路径/Thirdparty_add/eigen-git-mirror
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

4.4. 安装opencv

cd orb_slam3代码所在路径/Thirdparty_add/opencv-4.8.0
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local -DENABLE_CXX11=ON -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_JASPER=OFF -DBUILD_OPENEXR=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -DWITH_EIGEN=ON -DWITH_FFMPEG=ON -DWITH_OPENMP=ON ..
make -j4
sudo make install

4.5. 安装Pangolin库

cd orb_slam3代码所在路径/Thirdparty_add/Pangolin
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

4.6. 安装bosst库

cd orb_slam3代码所在路径/Thirdparty_add/boost_1_83_0
sh bootstrap.sh
./b2
./b2 --clean
./b2 install

参考博客流程:作者:抓饼先生,Boost笔记 1:下载、编译、安装、测试

4.7. 安装DBoW2

cd orb_slam3代码所在路径/Thirdparty/DBoW2
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
sudo make install

4.8. 安装g2o

cd orb_slam3代码所在路径/Thirdparty/g2o
mkdir build 
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local -DCMAKE_CXX_FLAGS=-std=c++11 -DBUILD_SHARED_LIBS=ON -DBUILD_UNITTESTS=OFF -DBUILD_WITH_MARCH_NATIVE=ON -DG2O_USE_CHOLMOD=OFF -DG2O_USE_CSPARSE=ON -DG2O_USE_OPENGL=OFF -DG2O_USE_OPENMP=ON ..
make -j4
sudo make install

4.9. 安装Sophus

cd orb_slam3代码所在路径/Thirdparty/Sophus
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j4
make install

4.10. 解压ORBvoc.txt.tar.gz压缩包

cd orb_slam3代码所在路径/Vocabulary
tar -xf ORBvoc.txt.tar.gz

4.11. 安装orb_slam3

DCMAKE_BUILD_TYPE可以根据需求选择Release或者Debug。

cd orb_slam3代码所在路径
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j4

我的docker环境为:
在这里插入图片描述

4.12. 安装openssh

#下载openssh
apt-get update
apt-get install openssh-server
# 设置root密码,然后设置两遍相同的密码,之后登陆的时候要用到
passwd
# 修改配置文件
apt-get install vim
vim /etc/ssh/sshd_config
# 注释掉 PermitRootLogin prohibit-password 这一行 添加这一行 PermitRootLogin yes 
# 5. 重启ssh服务
service ssh restart
# 或使用
# /etc/init.d/ssh restart# 本机连接ssh
# ssh -p 6789 root@0.0.0.0
# 远程访问服务器docker里正在运行的容器
# ssh -p 6790 root@192.168.2.83

4.13. MobaXterm软件远程连接容器

和之前的方法一样,配置远程服务器的会话。注意端口是起容器时设置的端口号,在上述例子中为6788。
在这里插入图片描述
在这里插入图片描述

4.14. 运行demo

cd slam编译所在位置/build
../Examples/Monocular/mono_euroc ../Vocabulary/ORBvoc.txt ../Examples/Monocular/EuRoC.yaml /data/database/EuRoC/V1_03_difficult ../Examples/Monocular/EuRoC_TimeStamps/V103.txt test# 第一个参数是ORBvoc.txt的路径
# 第二个参数是箱子配置参数的路径
# 第三个参数是数据的路径
# 第四个参数是时间戳txt文件的路径
# 第五个轨迹文件名

在这里插入图片描述

5. 编译问题

5.1 MobaXterm相关问题

5.1.1 问题1:报错显示 “xclock command not found”:

在这里插入图片描述
解决:
x11的包没有安装,需要通过下属代码进行安装:

sudo apt-get update
sudo apt-get install x11-apps
5.1.2 问题2:报错显示 “Error: Can’t open this Distplay”

在这里插入图片描述
解决:
这是找不到显示的服务器,需要添加服务器的地址和端口号。
首先,编辑环境变量:

vim ~/.bashrc

添加显示服务器地址和端口号:

# 例如我的
export DISPLAY=192.168.2.136:0.0

在这里插入图片描述
再刷新环境变量:

source ~/.bashrc
5.1.3 问题3:报错显示 “error: XDG RUNTIME DIR not set in environment”

在这里插入图片描述解决:
XDG运行的缓存没有地方存储,需要设置存放目录。
首先,编辑环境变量:

vim ~/.bashrc

添加显示服务器地址和端口号:

# 例如我的
export XDG_RUNTIME_DIR=/tmp/runtime_root

在这里插入图片描述
再刷新环境变量:

source ~/.bashrc

5.2 编译问题

5.2.1 问题1:报错显示 “No rule to make target ‘/usr/lib/x86_64-linux-gnu/libjpeg.so’, needed by ‘src/libpangolin.so’. Stop”
make[2]: *** No rule to make target '/usr/lib/x86_64-linux-gnu/libjpeg.so', needed by 'src/libpangolin.so'.  Stop.
CMakeFiles/Makefile2:168: recipe for target 'src/CMakeFiles/pangolin.dir/all' failed
make[1]: *** [src/CMakeFiles/pangolin.dir/all] Error 2
Makefile:151: recipe for target 'all' failed
make: *** [all] Error 2

libpangolin.so需要libjpeg.so文件,但是libjpeg.so不存在。
解决方法:

  1. 先查看/usr/lib/x86_64-linux-gnu/libjpeg.so是否存在,没有的话则重新下载:
apt install -y libjpeg

如果存在,但是名称不一样。如下图:
在这里插入图片描述则可以进行软连接。

ln -s /usr/lib/x86_64-linux-gnu/libjpeg.so.8 /usr/lib/x86_64-linux-gnu/libjpeg.so
# 第一个是源文件。
# 第二个是软连接生成的文件。

在这里插入图片描述
其他包也同理:
在这里插入图片描述

5.2.2 问题2:报错显示 “fatal error: openssl/md5.h: No such file or directory”

在这里插入图片描述
没有下载openssl
解决方法:

sudo apt-get install libssl-dev

在这里插入图片描述

解决方法引用自How to fix: fatal error: openssl/opensslv.h: No such file or directory in RedHat 7

5.2.3 问题3:报错显示 “cannot find -lboost_serialization”

在这里插入图片描述
该docker没有lboost_serialization库,需要下载boost库。
解决方法:
之前文章中介绍过boost库的下载方法。如下:

cd orb_slam3代码所在路径/Thirdparty_add/boost_1_83_0
sh bootstrap.sh
./b2
./b2 --clean
./b2 install

解决方法引用自作者:抓饼先生,Boost笔记 1:下载、编译、安装、测试

5.3. 之前遇到的编译问题

我之前编译siftgpu遇到的问题,和本文章相关不大,只是总结在这,方便我后续查看。

5.3.1 问题1:报错显示 “Could not find the following static Boost libraries”
Could not find the following static Boost librariesboost_systemboost_filesystemboost_threadboost_date_timeboost_chronoboost_regexboost_serializationboost_program_options

解决方法:

apt install libboost-all-dev
5.3.2 问题2:报错显示 “/usr/bin/ld: cannot find -lboost_system-mt”
/usr/bin/ld: cannot find -lboost_program_options-mt
/usr/bin/ld: cannot find -lboost_filesystem-mt
/usr/bin/ld: cannot find -lboost_system-mt
/usr/bin/ld: cannot find -lboost_thread-mt

这里出现错误的原因,是boost库链接出错,这时候我们需要修改CMakeList.txt文件,这里我就直接把CMakeList.txt贴出来,修改的地方做过注释。
解决方法:
【视频开发】【计算机视觉】doppia编译之四:安装其他库、编译和运行doppia
在错误四:
在这里插入图片描述

5.3.3 问题3:报错显示 “//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `__cudaRegisterFatBinary@libcudart.so.11.0”

解决方法:
没有libcudart.so.11.0,请安装cuda,并配置cuda环境。

5.3.4 问题4:报错显示 “//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `ilGetIntege”
undefined reference to `ilInit'
undefined reference to `ilGenImages'
undefined reference to `ilBindImage'undefined reference to `ilLoadImage'
undefined reference to `ilGetInteger'
undefined reference to `ilGetInteger'
undefined reference to `ilGetInteger'
undefined reference to `ilGetInteger'

解决方法:
安装 devil库
在Ubuntu上安装C++库

sudo apt-get install libdevil1c2 libdevil-dev
apt-file show libdevil1c2

libdevil1c2: /usr/bin/ilur
libdevil1c2: /usr/lib/libIL.so.1
libdevil1c2: /usr/lib/libIL.so.1.1.0
libdevil1c2: /usr/lib/libILU.so.1
libdevil1c2: /usr/lib/libILU.so.1.1.0
libdevil1c2: /usr/lib/libILUT.so.1
libdevil1c2: /usr/lib/libILUT.so.1.1.0
libdevil1c2: /usr/share/doc/libdevil1c2/changelog.Debian.gz
libdevil1c2: /usr/share/doc/libdevil1c2/copyright
libdevil1c2: /usr/share/lintian/overrides/libdevil1c2\

5.3.5 问题5:报错显示 “//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `std::__cxx11::basic_ostringstream<char, std::char_traits, std::allocator >::basic_ostringstream()@GLIBCXX_3.4.26”

解决:
libstdc++.so.6.0.25中不包含GLIBCXX的3.4.26版本,因此需要下载libstdc++.so.6.0.26,然后重新软连接到libstdc++.so.6
一般libstdc++都在/usr/lib64中,但是我在docker中为/usr/lib/x86_64-linux-gnu
参考:运行应用程序时出现GLIBCXX_3.4.26not found问题

5.3.6 问题6:报错显示 “//data/casia_mosaic_liyi_linux/src/siftgpu_extractor/SiftGPU/bin/libsiftgpu.so: undefined reference to `log@GLIBC_2.29”

解决方法:
检查/usr/lib/x86_64-linux-gnu/libc.so,看看是否存在或者,兼容GLIBC_2.29.
检查命令:

strings /lib/x86_64-linux-gnu/libc.so.6 | grep GLIBC_

没有lib.so,则安装glibc-2.29,并进行安装和编译

cd glibc-build
../glibc-2.29/configure --prefix=/usr/lib/glibc-2.29
make -j8
make install

然后进行软连接:

ln -sf /usr/lib/glibc-2.29/lib/libm-2.29.so libm.so.6

参考博客:wsl2中安装QGC

缺失bison和gawk,或者bison和gawk的版本过低。
解决办法:
更新文件 gawk 和 bison
命令为:
sudo apt-get install gawk
sudo apt-get install bison

然后libsiftgpu.so的重新编译生成。在SiftGPU下进行编译。
用ldd /bin/libsiftgpu.so来进行测试。

参考博客:SiftGPU在Ubuntu和Windows下的编译与使用

5.3.7 问题7:报错显示 “apt-file not found”

解决:

sudo apt-get update
sudo apt-get install apt-file
sudo apt-file update
5.3.8 问题8:报错显示 “ld.so.conf: No such file or directory”

在指定位置建立ld.so.conf

mkdir -p $prefix/etc
touch $prefix/etc/ld.so.conf

参考博客:ld.so.conf: No such file or directory

这篇关于在docker环境下从头搭建openvslam/orb_slam3的流程记录以及问题总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282078

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Docker镜像pull失败两种解决办法小结

《Docker镜像pull失败两种解决办法小结》有时候我们在拉取Docker镜像的过程中会遇到一些问题,:本文主要介绍Docker镜像pull失败两种解决办法的相关资料,文中通过代码介绍的非常详细... 目录docker 镜像 pull 失败解决办法1DrQwWCocker 镜像 pull 失败解决方法2总

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1