python爬虫分析基于python图书馆书目推荐数据分析与可视化

本文主要是介绍python爬虫分析基于python图书馆书目推荐数据分析与可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

收藏关注不迷路

文章目录

  • 前言
  • 一、项目介绍
  • 二、开发环境
  • 三、功能介绍
  • 四、核心代码
  • 五、效果图
  • 六、文章目录


前言

随着电子技术的普及和快速发展,线上管理系统被广泛的使用,有很多商业机构都在实现电子信息化管理,图书推荐也不例外,由比较传统的人工管理转向了电子化、信息化、系统化的管理。
传统的图书推荐管理,一开始都是手工记录,然后将手工记录的文档进行存档;随着电脑的普及,个性化智能图书推荐管理演变成了手工记录后,输入电脑进行存档。传统的管理方式,对管理者来说工作量大。而且这种图书推荐管理的方式,容易出现遗失或因为失误输入错误的信息等等。在这些基础上,我把python技术的图书馆书目推荐数据分析与可视化荐系统作为我的毕业设计,希望可以解决图书推荐管理中出现的问题,简化工作人员的压力,也可以方便管理员进行系统化、电子化的管理。

一、项目介绍

建立本图书馆书目推荐数据分析是为了通过系统对图书数据根据算法进行的分析好推荐,以方便用户对自己所需图书信息的查询,根据不同的算法机制推荐给不同用户不同的图书,用户便可以从系统中获得图书信息信息。本系统旨在建立用户、管理者、图书三者之间的桥梁关系,从而使用户能及时有效的从管理者手中获取到信息。所以我们认为建立一个网上图书馆书目推荐数据分析是非常必要的,其方便高效、简单快捷的管理模式是很有使用性的。
通过图书馆书目推荐数据分析与可视化系统的研究可以更好地理解系统开发的意义,而且也有利于发展更多的智能系统,解决了人才的供给和需求的平衡问题,图书馆书目推荐数据分析与可视化系统的开发建设,由于其开发周期短,维护方便,所以它可以适应个性化智能图书推荐体系的基本要求。

二、开发环境

开发语言:Python
python框架:django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js

————————————————

三、功能介绍

系统采用的技术包括,Python网络爬虫,pandas,numpy数据分析,flask后端框架,前端采用bootstrap,echarts和JavaScript进行渲染和交互,sqlite关系数据库,轻量级mysql。论文内容基于该图书馆书目推荐数据分析系统的实现分为两个部分,爬虫部分,和爬取的数据进行分析展示。
本课题对图书馆的书籍和用户数据进行采集,使用Python技术进行数据整理并存储MySQL数据库中;采用numpy技术进行数据分析,在结合图书馆书籍借阅的具体特征的基础上,提出适用于馆藏书籍的个性化推荐模型;对用户相关数据进行分析,为相似度较高的用户建立邻居关系,基于协同过滤算法产生符合用户兴趣的个性化图书资源列表;最后对推荐结果进行排序,并通过可视化技术展示出来 。然后使用Python专门的数据可视化库echarts进行可视化展示,所以要选取数据维度较多的数据源进行采集爬取。并且根据各个方向进行了图表的设计和测试数据的完善。
在这里插入图片描述

四、核心代码

部分代码:


def users_login(request):if request.method in ["POST", "GET"]:msg = {'code': normal_code, "msg": mes.normal_code}req_dict = request.session.get("req_dict")if req_dict.get('role')!=None:del req_dict['role']datas = users.getbyparams(users, users, req_dict)if not datas:msg['code'] = password_error_codemsg['msg'] = mes.password_error_codereturn JsonResponse(msg)req_dict['id'] = datas[0].get('id')return Auth.authenticate(Auth, users, req_dict)def users_register(request):if request.method in ["POST", "GET"]:msg = {'code': normal_code, "msg": mes.normal_code}req_dict = request.session.get("req_dict")error = users.createbyreq(users, users, req_dict)if error != None:msg['code'] = crud_error_codemsg['msg'] = errorreturn JsonResponse(msg)def users_session(request):''''''if request.method in ["POST", "GET"]:msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}req_dict = {"id": request.session.get('params').get("id")}msg['data'] = users.getbyparams(users, users, req_dict)[0]return JsonResponse(msg)def users_logout(request):if request.method in ["POST", "GET"]:msg = {"msg": "退出成功","code": 0}return JsonResponse(msg)def users_page(request):''''''if request.method in ["POST", "GET"]:msg = {"code": normal_code, "msg": mes.normal_code,"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}req_dict = request.session.get("req_dict")tablename = request.session.get("tablename")try:__hasMessage__ = users.__hasMessage__except:__hasMessage__ = Noneif __hasMessage__ and __hasMessage__ != "否":if tablename != "users":req_dict["userid"] = request.session.get("params").get("id")if tablename == "users":msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \msg['data']['pageSize'] = users.page(users, users, req_dict)else:msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \msg['data']['pageSize'] = [],1,0,0,10return JsonResponse(msg)

五、效果图

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

六、文章目录

目 录
摘 要 I
ABSTRACT II
目 录 II
第1章 绪论 1
1.1背景及意义 1
1.2 国内外研究概况 1
1.3 研究的内容 1
第2章 相关技术 3
2.1 Python简介 4
2.2 Django 框架介绍 6
2.3 B/S结构 4
2.4 MySQL数据库 4
第3章 系统分析 5
3.1 需求分析 5
3.2 系统可行性分析 5
3.2.1技术可行性:技术背景 5
3.2.2经济可行性 6
3.2.3操作可行性: 6
3.3 项目设计目标与原则 6
3.4系统流程分析 7
3.4.1操作流程 7
3.4.2添加信息流程 8
3.4.3删除信息流程 9
第4章 系统设计 11
4.1 系统体系结构 11
4.2开发流程设计系统 12
4.3 数据库设计原则 13
4.4 数据表 15
第5章 系统详细设计 19
5.1管理员功能模块 20
5.2用户功能模块 23
5.3前台功能模块 19
第6章 系统测试 25
6.1系统测试的目的 25
6.2系统测试方法 25
6.3功能测试 26
结 论 28
致 谢 29

这篇关于python爬虫分析基于python图书馆书目推荐数据分析与可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281389

相关文章

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本