Albumentations数据增强部分方法使用和可视化展示

本文主要是介绍Albumentations数据增强部分方法使用和可视化展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Albumentations数据增强方法

  • 常用数据增强方法
    • Blur 模糊
    • VerticalFlip 水平翻转
    • HorizontalFlip 垂直翻转
    • Flip 翻转
    • Normalize 归一化
    • Transpose 转置
    • RandomCrop 随机裁剪
    • RandomGamma 随机Gamma
    • RandomRotate90 随机旋转90度
    • Rotate旋转
    • ShiftScaleRotate 平移缩放旋转
    • CenterCrop 中心裁剪
    • OpticalDistortion 光学畸变
    • GridDistortion 网格失真
    • ElasticTransform 弹性变换
    • RandomGridShuffle 随机网格洗牌
    • HueSaturationValue 色调饱和度值
    • PadIfNeeded 填充
    • RGBShift RGB平移
    • RandomBrightness 随机亮度
    • RandomContrast 随机对比度
    • MotionBlur 运动模糊
    • MedianBlur 中心模糊
    • GaussianBlur 高斯模糊
    • GaussNoise 高斯噪声
    • CLAHE 对比度受限自适应直方图均衡
    • InvertImg 反转图像
    • ChannelShuffle 通道洗牌
    • Cutout
    • CoarseDropout
    • ToFloat
    • Crop 裁剪
    • RandomScale 随机缩放
    • LongestMaxSize
    • SmallestMaxSize
    • Resize缩放
    • RandomSizedCrop 随机裁剪缩放
    • RandomBrightnessContrast 随机亮度对比度
    • RandomCropNearBBox
    • ISONoise
    • Solarize

常用数据增强方法

本人根据非常棒的Albumentations数据增强库总结了常用的数据增强方法(本人能力有限,如有错误,请指出。有人使用Albumentations库的Blur, Flip, RandomBrightnessContrast, ShiftScaleRotate, ElasticTransform, Transpose, GridDistortion, HueSaturationValue, CLAHE, CoarseDropout在图像分类比赛中取得第二名,所以本人写了这篇文章)。
Albumentations官方手册

image_75367a00.png

Blur 模糊

Blur(blur_limit = 7,always_apply = False,p = 0.5 )
图像均值平滑滤波。
image_f58bcf3f.png

VerticalFlip 水平翻转

VerticalFlip(always_apply = False,p = 0.5 )
image_1fe08a34.png

HorizontalFlip 垂直翻转

HorizontalFlip(always_apply = False,p = 0.5 )
image_f8f72cba.png

Flip 翻转

Flip(always_apply = False,p = 0.5 )
水平和垂直翻转
image_9b559138.png

Normalize 归一化

Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, always_apply=False, p=1.0)
将像素值除以255 = 2 ** 8 - 1,减去每个通道的平均值并除以每个通道的std

Transpose 转置

Transpose(always_apply=False, p=0.5)
将图像行和列互换
image_c3eabb0d.png

RandomCrop 随机裁剪

RandomCrop(height, width, always_apply=False, p=1.0)
随机从图像裁剪一块区域(参数是高宽,而且必须是整数,所以使用这个函数一定会裁剪一定区域的图片)
image_cf02d61c.png

RandomGamma 随机Gamma

*RandomGamma(gamma_limit=(80, 120), eps=1e-07, always_apply=False, p=0.5)
随机伽马变换。image_420e05a1.png

RandomRotate90 随机旋转90度

RandomRotate90(always_apply=False, p=0.5)
随机旋转0个或多个90度。
image_a8b2b2fa.png

Rotate旋转

Rotate(limit=90, interpolation=1, border_mode=4, value=None, mask_value=None, always_apply=False, p=0.5)
随机旋转图片(默认使用reflect方法扩充图片,可以改为参数等其他方法填充)。
image_e038aae5.png

ShiftScaleRotate 平移缩放旋转

ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=45, interpolation=1, border_mode=4, value=None, mask_value=None, always_apply=False, p=0.5)
随机平移、缩放、旋转图片。
image_7d08a393.png

CenterCrop 中心裁剪

CenterCrop(height, width, always_apply=False, p=1.0)
随机中心裁剪图片(参数为高宽,一定会进行裁剪,注意其输入为整数)。
image_91c46a7a.png

OpticalDistortion 光学畸变

OpticalDistortion(distort_limit=0.05, shift_limit=0.05, interpolation=1, border_mode=4, value=None, mask_value=None, always_apply=False, p=0.5)
对图像进行光学畸变。
image_c45c44ab.png

GridDistortion 网格失真

GridDistortion(num_steps=5, distort_limit=0.3, interpolation=1, border_mode=4, value=None, mask_value=None, always_apply=False, p=0.5)
对图像进行网格失真。
image_d64353ca.png

ElasticTransform 弹性变换

ElasticTransform(alpha = 1,sigma = 50,alpha_affine = 50,interpolation = 1,border_mode = 4,value = None,mask_value = None,always_apply = False,approximate = False,p = 0.5 )
随机对图像进行弹性变换。
image_2abede88.png

RandomGridShuffle 随机网格洗牌

RandomGridShuffle(grid=(3, 3), always_apply=False, p=1.0)
参数:将图像以网格方式生成几块,并随机打乱。
image_112a59ef.png

HueSaturationValue 色调饱和度值

HueSaturationValue(hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20, always_apply=False, p=0.5)
参数:随机色调、饱和度、值变化。
image_cb66ee0e.png

PadIfNeeded 填充

PadIfNeeded(min_height=1024, min_width=1024, border_mode=4, value=None, mask_value=None, always_apply=False, p=1.0)
填充图像。
image_ac4eefc7.png

RGBShift RGB平移

RGBShift(r_shift_limit=20, g_shift_limit=20, b_shift_limit=20, always_apply=False, p=0.5)
参数:随机平移R、G、B通道值。
image_f52fa600.png

RandomBrightness 随机亮度

RandomBrightness(limit=0.2, always_apply=False, p=0.5)y = False,p = 0.5 )
随机亮度变化。
image_8db05e6e.png

RandomContrast 随机对比度

RandomContrast(limit=0.2, always_apply=False, p=0.5)
随机对比度变化。
image_4cbead65.png

MotionBlur 运动模糊

MotionBlur(blur_limit=7, always_apply=False, p=0.5)
给图像加上运动模糊。运动模糊是景物图象中的移动效果。它比较明显地出现在长时间暴光或场景内的物体快速移动的情形里。
image_32ef43b6.png

MedianBlur 中心模糊

MedianBlur(blur_limit=7, always_apply=False, p=0.5)
图像中值滤波。
image_3cc0ac51.png

GaussianBlur 高斯模糊

GaussianBlur(blur_limit=7, always_apply=False, p=0.5)
图像高斯平滑滤波。
image_63301667.png

GaussNoise 高斯噪声

*GaussNoise(var_limit=(10.0, 50.0), mean=None, always_apply=False, p=0.5)
给图像增加高斯噪声。
image_47b2016d.png

CLAHE 对比度受限自适应直方图均衡

CLAHE(clip_limit=4.0, tile_grid_size=(8, 8), always_apply=False, p=0.5)
将对比度受限的自适应直方图均衡化应用于输入图像。。
image_5c5d1c6c.png

InvertImg 反转图像

InvertImg(always_apply=False, p=0.5)
通过用255减去像素值来反转输入图像。
image_d69ac373.png

ChannelShuffle 通道洗牌

ChannelShuffle(always_apply=False, p=0.5)
随机改变RGB三个通道的顺序。
image_55dea620.png

Cutout

Cutout(num_holes=8, max_h_size=8, max_w_size=8, fill_value=0, always_apply=False, p=0.5)
在图像中生成正方形区域。
image_0d8a4c3c.png

CoarseDropout

*CoarseDropout(max_holes=8, max_height=8, max_width=8, min_holes=None, min_height=None, min_width=None, fill_value=0, always_apply=False, p=0.5)
在图像上生成矩形区域。
image_49b778d0.png

ToFloat

ToFloat(max_value=None, always_apply=False, p=1.0)
图像除一个值,默认值为图像数据类型的最大值。

Crop 裁剪

Crop(x_min=0, y_min=0, x_max=1024, y_max=1024, always_apply=False, p=1.0)
裁剪图像,其与RandomCrop的区别是可以指定最小值和最大值,而RandomCrop只能指定宽高。
image_d6b60b96.png

RandomScale 随机缩放

RandomScale(scale_limit = 0.1,interpolation = 1,always_apply = False,p = 0.5 )
随机缩放图像大小。

LongestMaxSize

LongestMaxSize(max_size = 1024,interpolation = 1,always_apply = False,p = 1 )
缩放图像,使最大边等于max_size,保持初始图像的纵横比。

SmallestMaxSize

SmallestMaxSize(max_size = 1024,interpolation = 1,always_apply = False,p = 1 )
缩放图像,使最小边等于max_size,保持初始图像的纵横比。## VerticalFlip 水平旋转。

Resize缩放

Resize(height,width,interpolation = 1,always_apply = False,p = 1 )
将输入图像调整为给定的高度和宽度。

RandomSizedCrop 随机裁剪缩放

RandomSizedCrop(min_max_height,height,width,w2h_ratio = 1.0,interpolation = 1,always_apply = False,p = 1.0 )
随机裁剪图像并缩放到固定大小。
image_96d3c926.png

RandomBrightnessContrast 随机亮度对比度

RandomBrightnessContrast(brightness_limit = 0.2,contrast_limit = 0.2,brightness_by_max = None,always_apply = False,p = 0.5 )
随机更改输入图像的亮度和对比度。

image_e3d48806.png

RandomCropNearBBox

RandomCropNearBBox(max_part_shift = 0.3,always_apply = False,p = 1.0 )
随机平移bbox的x,y坐标并从图像中裁剪。
image_cbb7bf11.png

ISONoise

ISONoise(color_shift=(0.01, 0.05), intensity=(0.1, 0.5), always_apply=False, p=0.5)
施加摄像头传感器噪音。
image_45eac03b.png

Solarize

Solarize(threshold=128, always_apply=False, p=0.5)
反转高于阈值的所有像素值。
image_f3050a03.png

这篇关于Albumentations数据增强部分方法使用和可视化展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281381

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传