[卷积神经网络]FasterNet论文解析

2023-10-25 03:36

本文主要是介绍[卷积神经网络]FasterNet论文解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

        FasterNet是CVPR2023的文章,通过使用全新的部分卷积PConv,更高效的提取空间信息,同时削减冗余计算和内存访问,效果非常明显。相较于DWConv,PConv的速度更快且精度也非常高,识别精度基本等同于大型网络Swin-B,但是在GPU上可以提升36%的吞吐量。原文地址和代码地址如下:

Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networksicon-default.png?t=N7T8https://arxiv.org/abs/2303.03667FasterNeticon-default.png?t=N7T8https://github.com/JierunChen/FasterNet

二、基本结构

        1.PConv

        FasterNet的核心是PConv(Partial Conv),PConv有比常规Conv更低的FLOPs和比DWConv和GConv更高的FLOPs,能更好的利用设备的计算能力。

         整个FasterNet的网络结构如上图所示。PConv的工作原理是:仅将输入特征图的一部分通道用于特征提取,其他的通道保持不变(即c_pc通道),使用部分的通道数为c_p。可以认为输入特征图和输出特征图具有相同的通道。而PConv的FLOPS可以表示为:

                FLOPS = h\times w \times k^2 \times c_p^2

        其中c_pc一起组成分离比:r=\frac{c_p}{c},在r=\frac{1}{4}时,PConv仅有Conv\frac{1}{16}的FLOPS,同时PConv还有更小的内存访问量:

                h \times w \times 2c_p+k^2 \times c_p^2 \approx h \times w \times 2c_p

        2.T型Conv

        通过将逐点卷积(PWConv)附加到PConv上,使得输入特征图上的有效感受野看起来像一个T型的Conv,这种卷积会更加关注中心位置。

        3.作为通用骨干网络

        使用PConv搭建的FasterNet如上面所示,其能以较快的速度处理多种视觉任务。FasterNet具备4个Stage,每个Stage之前有一个嵌入层(Embedding;步长为4的4x4 Conv)或一个合并层(Mereging;步长为2的2x2 Conv),使用哪种间隔与其是否需要下采样有关。

        每一个Faster Block的后面跟着两个PWConv层,最后统一放置一个全局池化(Global Pool)和一个全连接层(FC)

三、结论

        FasterNet的主要优势在于保证一定精度的同时提升运算速度。在对比实验中,FasterNet的参数量略大于MobileNet等轻型骨干网络,GFLOPS也略高于轻型骨干网络。但网络延迟却更低。

这篇关于[卷积神经网络]FasterNet论文解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/279761

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

OWASP十大安全漏洞解析

OWASP(开放式Web应用程序安全项目)发布的“十大安全漏洞”列表是Web应用程序安全领域的权威指南,它总结了Web应用程序中最常见、最危险的安全隐患。以下是对OWASP十大安全漏洞的详细解析: 1. 注入漏洞(Injection) 描述:攻击者通过在应用程序的输入数据中插入恶意代码,从而控制应用程序的行为。常见的注入类型包括SQL注入、OS命令注入、LDAP注入等。 影响:可能导致数据泄

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [