本文主要是介绍贝壳新房数据获取--词云处理--requests,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
目标网址分析
目标网址
大体结构
查看分页
数据获取与保存
数据查看
CSV查看
Excel打开
词云
学习内容:获取重庆贝壳新房房价数据,CSV形式保存在本地,解决Excel打开乱码问题,并对其数据进行简单词云处理........
-
目标网址分析
-
目标网址
- 【重庆楼盘_重庆新楼盘_重庆新房房价】信息网-重庆贝壳新房
-
大体结构
查看后得到:
- 提取结构:
-
查看分页
- 发现分页很规则,,,,,,,,,
# https://cq.fang.ke.com/loupan/pg1/ 第 1 页 # https://cq.fang.ke.com/loupan/pg2/ 第 2 页 # https://cq.fang.ke.com/loupan/pg3/ 第 3 页 # url = 'https://cq.fang.ke.com/loupan/pg' + str(page)
-
数据获取与保存
代码:
"""
2022年CSDN:抄代码抄错的小牛马
"""
import requests
from lxml import etree
import csvheaders = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36',
}# 分页操作
def get_url():star_page = int(input("请输入起始页码:"))end_page = int(input("请输入结束页码:"))s = []for page in range(star_page, end_page + 1):url = 'https://cq.fang.ke.com/loupan/pg' + str(page)# print(url)s.append(url)# print(s)return s# 解析数据与保存
def get_data(s):for url in s:# print(url)resp = requests.get(url=url, headers=headers)content = resp.text# 解析tree = etree.HTML(content)li_list = tree.xpath('//div[@class="resblock-list-container clearfix"]/ul[@class="resblock-list-wrapper"]/li')# 循环for i in li_list:# 标题title = i.xpath('./div/div/a/text()')[0]# 销售状态和房屋类型type = i.xpath('./div/div[1]/span/text()')zhuangtai_type = ','.join(type)# 地理位置location = i.xpath('./div[@class="resblock-desc-wrapper"]/a/text()')locations = ' '.join(location).replace('\n\t', '').replace('\t', '')# 平米均价price = i.xpath('./div[@class="resblock-desc-wrapper"]/div[@class="resblock-price"]/div/span/text()')avg_price = ''.join(price)# 总价/套General_price = \i.xpath('./div[@class="resblock-desc-wrapper"]/div[@class="resblock-price"]/div[@class="second"]/text()')General_prices = ''.join(General_price)# 户型room_type = i.xpath('./div[@class="resblock-desc-wrapper"]/a[@class="resblock-room"]/span/text()')room_types = ''.join(room_type)# 房子简介Brief_introduction = i.xpath('./div[@class="resblock-desc-wrapper"]/div[@class="resblock-tag"]/span/text()')Brief_introductions = ','.join(Brief_introduction)# 写入数据writer.writerow([title, zhuangtai_type, locations, avg_price, General_prices, room_types, Brief_introductions])if __name__ == '__main__':# 新建CSV文件 newline=''防止空行写入f = open('重庆新房房价.csv', mode='a', encoding='utf-8', newline='')writer = csv.writer(f)# 写入表头, 在这里写如表头,可避免重复写入head = ['标题', '销售状态和房屋类型', '地理位置', '平米均价', '总价/套', '户型', '房子简介']writer.writerow(head)s = get_url()get_data(s)# 关闭文件f.close()
-
数据查看
-
CSV查看
-
Excel打开
- 解决乱码问题
- 解决
加载后,打开并另存为:
-
词云
代码:
"""
2022年CSDN:抄代码抄错的小牛马
"""
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import wordcloud
import jieba
from wordcloud import ImageColorGeneratordef func1():file = open('重庆新房房价.csv', encoding="utf-8") # 当前路径result = file.read()file.close()return resultdef func2(words):wordList = jieba.lcut(words)pic = np.array(Image.open("1.jpg"))pic_color = ImageColorGenerator(pic)c = wordcloud.WordCloud(scale=4,mask=pic,font_path="./1.ttf", # 字体路径(隶书)background_color='white', ) # 背景颜色c.generate(",".join(wordList)) # 生成词云plt.imshow(c.recolor(color_func=pic_color), interpolation='bilinear')c.to_file('./重庆重庆新房房价.jpg')words = func1()
func2(words)
效果:
拜~~~
这篇关于贝壳新房数据获取--词云处理--requests的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!