2663 Tri Tiling 完美覆盖,样例分析+详细题解-只需10行代码

2023-10-24 14:10

本文主要是介绍2663 Tri Tiling 完美覆盖,样例分析+详细题解-只需10行代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

描述

一张普通的国际象棋棋盘,它被分成 8 乘 8 (8 行 8 列) 的 64 个方格。设有形状一样的多米诺牌,每张牌恰好覆盖棋盘上相邻的两个方格,即一张多米诺牌是一张 1 行 2 列或者 2 行 1 列的牌。那么,是否能够把 32 张多米诺牌摆放到棋盘上,使得任何两张多米诺牌均不重叠,每张多米诺牌覆盖两个方格,并且棋盘上所有的方格都被覆盖住?我们把这样一种排列称为棋盘被多米诺牌完美覆盖。这是一个简单的排列问题,同学们能够很快构造出许多不同的完美覆盖。但是,计算不同的完美覆盖的总数就不是一件容易的事情了。不过,同学们 发挥自己的聪明才智,还是有可能做到的。
现在我们通过计算机编程对 3 乘 n 棋盘的不同的完美覆盖的总数进行计算。
在这里插入图片描述
任务
对 3 乘 n 棋盘的不同的完美覆盖的总数进行计算。

输入

一次输入可能包含多行,每一行分别给出不同的 n 值 ( 即 3 乘 n 棋盘的列数 )。当输入 -1 的时候结束。

n 的值最大不超过 30.

输出

针对每一行的 n 值,输出 3 乘 n 棋盘的不同的完美覆盖的总数。

思路

看着有点麻烦,其实不难,代码10行就够了。
首先对 n = 2 n=2 n=2时,对3*2的棋盘我们有三种(丑,勿怪)覆盖方式
在这里插入图片描述
对样例来说有12行,我们挑几种形式来分析一下
在这里插入图片描述

  • n n n是奇数,可以考虑一列,三列,5列的情形,你会发现,只要是奇数列,我们完全没有办法把他填充完整,因此我们可以考虑以两列为一个单位。
  • 记函数 f ( n ) f(n) f(n)为在 n n n列时的覆盖方案数目, f ( 0 ) = 1 f(0)=1 f(0)=1,为什么这么初始化?看 f ( 2 ) f(2) f(2)我们以两列为一个单位,那么他必定与 f ( 0 ) f(0) f(0)的排列总数有关,而 f ( 2 ) = 3 f(2)=3 f(2)=3是0号位置的排列数目之和*[1-2]位置的排列方法数目,因此初始化为1.
  • 再来看看 f ( 4 ) f(4) f(4),也就是下图红线框起来的部分。首先考虑他最右边两列有三种情况,承上之前的排列数即 f ( 2 ) ∗ 3 f(2)*3 f(2)3,不止如此,他的四列也可能长蓝线框起来这样,这种情况下有几种组合呢,答案是 f ( 0 ) ∗ 2 f(0)*2 f(0)2
    在这里插入图片描述
  • 最后我们看看 f ( n ) f(n) f(n),首先他的最后两列有三种情况 f ( n ) = 3 ∗ f ( n − 2 ) + . . . f(n)=3*f(n-2)+... f(n)=3f(n2)+...,然后他的最后四列单独拿出来有两种情况 f ( n ) = 3 ∗ f ( n − 2 ) + 2 ∗ f ( n − 4 ) + . . . f(n)=3*f(n-2)+2*f(n-4)+... f(n)=3f(n2)+2f(n4)+...,他的最后六列单独拿出来也只有两种情况:于是 f ( n ) = 3 ∗ f ( n − 2 ) + 2 ∗ f ( n − 4 ) + 2 ∗ f ( n − 6 ) + . . . f(n)=3*f(n-2)+2*f(n-4)+2*f(n-6)+... f(n)=3f(n2)+2f(n4)+2f(n6)+...,不断的向前递归我们得到
    在这里插入图片描述
    f ( n ) = 3 ∗ f ( n − 2 ) + 2 ∗ f ( n − 4 ) + 2 ∗ f ( n − 6 ) + . . . + 2 ∗ f ( 0 ) f(n)=3*f(n-2)+2*f(n-4)+2*f(n-6)+...+2*f(0) f(n)=3f(n2)+2f(n4)+2f(n6)+...+2f(0)
    f ( n − 2 ) = 3 ∗ f ( n − 4 ) + 2 ∗ f ( n − 6 ) + . . . + 2 ∗ f ( 0 ) ) f(n-2)=3*f(n-4)+2*f(n-6)+...+2*f(0)) f(n2)=3f(n4)+2f(n6)+...+2f(0))
    f ( n ) = 4 f ( n − 2 ) − f ( n − 4 ) f(n)=4f(n-2)-f(n-4) f(n)=4f(n2)f(n4)
#include<iostream>
using namespace std;
int f[35];
int main() {int n = 0; f[0] = 1, f[2] = 3;for (int i = 4; i < 35; i++)f[i] = 4 * f[i - 2] - f[i - 4];while (cin >> n && n != -1) {cout << f[n] << endl;}
}

这篇关于2663 Tri Tiling 完美覆盖,样例分析+详细题解-只需10行代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275719

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python