2663 Tri Tiling 完美覆盖,样例分析+详细题解-只需10行代码

2023-10-24 14:10

本文主要是介绍2663 Tri Tiling 完美覆盖,样例分析+详细题解-只需10行代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

描述

一张普通的国际象棋棋盘,它被分成 8 乘 8 (8 行 8 列) 的 64 个方格。设有形状一样的多米诺牌,每张牌恰好覆盖棋盘上相邻的两个方格,即一张多米诺牌是一张 1 行 2 列或者 2 行 1 列的牌。那么,是否能够把 32 张多米诺牌摆放到棋盘上,使得任何两张多米诺牌均不重叠,每张多米诺牌覆盖两个方格,并且棋盘上所有的方格都被覆盖住?我们把这样一种排列称为棋盘被多米诺牌完美覆盖。这是一个简单的排列问题,同学们能够很快构造出许多不同的完美覆盖。但是,计算不同的完美覆盖的总数就不是一件容易的事情了。不过,同学们 发挥自己的聪明才智,还是有可能做到的。
现在我们通过计算机编程对 3 乘 n 棋盘的不同的完美覆盖的总数进行计算。
在这里插入图片描述
任务
对 3 乘 n 棋盘的不同的完美覆盖的总数进行计算。

输入

一次输入可能包含多行,每一行分别给出不同的 n 值 ( 即 3 乘 n 棋盘的列数 )。当输入 -1 的时候结束。

n 的值最大不超过 30.

输出

针对每一行的 n 值,输出 3 乘 n 棋盘的不同的完美覆盖的总数。

思路

看着有点麻烦,其实不难,代码10行就够了。
首先对 n = 2 n=2 n=2时,对3*2的棋盘我们有三种(丑,勿怪)覆盖方式
在这里插入图片描述
对样例来说有12行,我们挑几种形式来分析一下
在这里插入图片描述

  • n n n是奇数,可以考虑一列,三列,5列的情形,你会发现,只要是奇数列,我们完全没有办法把他填充完整,因此我们可以考虑以两列为一个单位。
  • 记函数 f ( n ) f(n) f(n)为在 n n n列时的覆盖方案数目, f ( 0 ) = 1 f(0)=1 f(0)=1,为什么这么初始化?看 f ( 2 ) f(2) f(2)我们以两列为一个单位,那么他必定与 f ( 0 ) f(0) f(0)的排列总数有关,而 f ( 2 ) = 3 f(2)=3 f(2)=3是0号位置的排列数目之和*[1-2]位置的排列方法数目,因此初始化为1.
  • 再来看看 f ( 4 ) f(4) f(4),也就是下图红线框起来的部分。首先考虑他最右边两列有三种情况,承上之前的排列数即 f ( 2 ) ∗ 3 f(2)*3 f(2)3,不止如此,他的四列也可能长蓝线框起来这样,这种情况下有几种组合呢,答案是 f ( 0 ) ∗ 2 f(0)*2 f(0)2
    在这里插入图片描述
  • 最后我们看看 f ( n ) f(n) f(n),首先他的最后两列有三种情况 f ( n ) = 3 ∗ f ( n − 2 ) + . . . f(n)=3*f(n-2)+... f(n)=3f(n2)+...,然后他的最后四列单独拿出来有两种情况 f ( n ) = 3 ∗ f ( n − 2 ) + 2 ∗ f ( n − 4 ) + . . . f(n)=3*f(n-2)+2*f(n-4)+... f(n)=3f(n2)+2f(n4)+...,他的最后六列单独拿出来也只有两种情况:于是 f ( n ) = 3 ∗ f ( n − 2 ) + 2 ∗ f ( n − 4 ) + 2 ∗ f ( n − 6 ) + . . . f(n)=3*f(n-2)+2*f(n-4)+2*f(n-6)+... f(n)=3f(n2)+2f(n4)+2f(n6)+...,不断的向前递归我们得到
    在这里插入图片描述
    f ( n ) = 3 ∗ f ( n − 2 ) + 2 ∗ f ( n − 4 ) + 2 ∗ f ( n − 6 ) + . . . + 2 ∗ f ( 0 ) f(n)=3*f(n-2)+2*f(n-4)+2*f(n-6)+...+2*f(0) f(n)=3f(n2)+2f(n4)+2f(n6)+...+2f(0)
    f ( n − 2 ) = 3 ∗ f ( n − 4 ) + 2 ∗ f ( n − 6 ) + . . . + 2 ∗ f ( 0 ) ) f(n-2)=3*f(n-4)+2*f(n-6)+...+2*f(0)) f(n2)=3f(n4)+2f(n6)+...+2f(0))
    f ( n ) = 4 f ( n − 2 ) − f ( n − 4 ) f(n)=4f(n-2)-f(n-4) f(n)=4f(n2)f(n4)
#include<iostream>
using namespace std;
int f[35];
int main() {int n = 0; f[0] = 1, f[2] = 3;for (int i = 4; i < 35; i++)f[i] = 4 * f[i - 2] - f[i - 4];while (cin >> n && n != -1) {cout << f[n] << endl;}
}

这篇关于2663 Tri Tiling 完美覆盖,样例分析+详细题解-只需10行代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275719

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll