Banana Pi BPI-W3 RK3588平台驱动调试篇 [ PCIE篇一 ] - PCIE的开发指南

2023-10-24 10:52

本文主要是介绍Banana Pi BPI-W3 RK3588平台驱动调试篇 [ PCIE篇一 ] - PCIE的开发指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RK3588平台驱动调试篇 [ PCIE篇 ] - PCIE的开发指南

1、PCIE接口概述

PCIe(Peripheral Component Interconnect Express)是一种用于连接计算机内部组件的高速接口标准。以下是关于PCIe接口的简要介绍:

  • 高速传输: PCIe接口提供了高速的数据传输通道,可用于连接各种硬件设备,如图形卡、存储设备、网络适配器等。它的速度通常以每秒传输的数据位数(例如PCIe x1、x4、x8、x16等)来表示,每个通道的带宽可以根据需要扩展。
  • 点对点连接: PCIe采用点对点连接的架构,这意味着每个设备都直接连接到主板上的PCIe插槽,而不需要与其他设备共享带宽。这有助于减少延迟并提高性能。
  • 热插拔支持: PCIe接口支持热插拔,允许用户在计算机运行时添加或移除PCIe设备,而不需要重新启动计算机。
  • 广泛应用: PCIe接口广泛用于连接图形卡、固态硬盘(SSD)、扩展卡、网络适配器和其他高性能设备。这使得计算机用户可以根据需要扩展和升级系统的性能和功能。

PCIe接口是一种计算机硬件连接标准,它提供了高速、高性能的数据传输通道,支持多种设备的连接。

2、传输速率简介

PCIe 分类、速度,按lane的个数分有 x1 x2 x4 x8 x16 (最大可支持32个通道),按代来分 有 gen1 gen2 gen3 gen4

PCIe gen1 和 PCIe gen2 采用的编解码方式是 8b/10b,PCIe gen3 和 之后的 采用的是 128b/130b 的编码方式。

8b/10b 意思是说,当我们要传输8b的数据时,实际在通道上传输的是10b的数据,解码的时候,我们希望得到的是8b的有效数据。这样,相当于有效的带宽是实际带宽的 80%。

同理128b/130b,是传输128bit数据实际线路中传输的是130bit数据。

速率图中的单位间的关系:

传输速率单位 GT/s,表示 千兆传输/秒,是实际每秒传输的位数,他不包括额外吞吐量的开销位。

两个例子:

PCIe gen1 x1 传输速率 2.5GT/s = 2500MT/s = ( 2500 / 10 ) MB/s

PCIe gen3 x1 传输速率 8GT/s = 8000MT/s = ( 8000 / 130 ) x ( 128/8 ) MB/s= 984.6153... MB/s

PCIe 可⽤带宽:吞吐量 = 传输速率 * 编码⽅案

例如:PCIe 2.0 协议的每⼀条 Lane ⽀持58 / 10 = 4 Gbps = 500 MB/s 的速率,Pcie 2.0 x 8的通道为例,x8的可⽤带宽为 48 = 32 Gbps = 4 GB/s。

3、 芯片PCIE资源

3.1 硬件介绍

RK3588共有5个PCIe的控制器,硬件IP是⼀样的,配置不⼀样,其中⼀个4Lane DM模式可以⽀持作为EP使⽤,另外⼀个2Lane和3个1Lane控制器均只能作为RC使⽤。RK3588有两种PCIe PHY,其中⼀种为pcie3.0PHY,含2个Port共4个Lane,另⼀种是pcie2.0的PHY有3个,每个都是2.0 1Lane,跟SATA和USB combo使⽤。pcie3.0 PHY的4Lane可以根据实际需求拆分使⽤,拆分后需要合理配置对应的控制器。

3.2 kernel dts解析之PCIe

控制器在DTS对应节点名称:

资源

模式

dts节点

可用phy

内部DMA

PCIe
Gen3 x 4lane

RC/EP

pcie3x4:
pcie@fe150000

pcie30phy

PCIe
Gen3 x 2lane

RC only

pcie3x2:
pcie@fe160000

pcie30phy

PCIe
Gen3 x 1lane

RC only

pcie2x1l0:
pcie@fe170000

pcie30phy,
combphy1_ps

PCIe
Gen3 x 1lane

RC only

pcie2x1l1:
pcie@fe180000

pcie30phy,
combphy2_psu

PCIe
Gen3 x 1lane

RC only

pcie2x1l2:
pcie@fe190000

combphy0_ps

在kernel/arch/arm64/boot/dts/rockchip/rk3588.dtsi下有具体描述

使用限制

  1. pcie30phy拆分后,pcie30x4控制器,⼯作于2Lane模式时只能固定配合pcie30phy的port0,⼯作于 1Lane模式时,只能固定配合pcie30phy的port0lane0;
  2. pcie30phy拆分后,pcie30x2控制器,⼯作于2Lane模式时只能固定配合pcie30phy的port1,⼯作于 1Lane模式时,只能固定配合pcie30phy的port1lane0;
  3. pcie30phy拆分为4个1Lane,pcie3phy的port0lane1只能固定配合pcie2x1l0控制器,pcie3phy的 port1lane1只能固定配合pcie2x1l1控制器;
  4. pcie30x4控制器⼯作于EP模式,可以使⽤4Lane模式,或者2Lane模式使⽤pcie30phy的port0, pcie30phy的port1中2lane可以作为RC配合其他控制器使⽤。默认使⽤common clock作为reference clock时,⽆法实现pcie30phy port0的lane0⼯作于EP模式,lane1⼯作于RC模式配合其他控制器使 ⽤,因为Port0的两个lane是共⽤⼀个输⼊的reference clock,RC和EP同时使⽤clock可能会有冲突。
  5. RK3588 pcie30phy 如果只使⽤其中⼀个port,另⼀个port也需要供电,refclk等其他信号可接地。

4、PCIe 使用配置

4.1 简介

Armsom-W3开发板上有 1 个 PCIe3.0 x 4 接口和一个PCIe2.0接口,如图

可以插入对应模组使用, 如图:

4.2 硬件设计

PCIe3.0 x 4 接口:

PCIe 2.0接口:

4.3 软件配置

一般根据原理图在 DTS 中配置供电引脚、复位引脚,选择正确的 pcie 控制器节点和 PHY 节点使能就可以。

kernel/arch/arm64/boot/dts/rockchip/rk3588-armsom-w3.dts中配置如下:

/ {vcc12v_dcin: vcc12v-dcin {compatible = "regulator-fixed";regulator-name = "vcc12v_dcin";regulator-always-on;regulator-boot-on;regulator-min-microvolt = <12000000>;regulator-max-microvolt = <12000000>;};vcc5v0_sys: vcc5v0-sys {compatible = "regulator-fixed";regulator-name = "vcc5v0_sys";regulator-always-on;regulator-boot-on;regulator-min-microvolt = <5000000>;regulator-max-microvolt = <5000000>;vin-supply = <&vcc12v_dcin>;};vcc3v3_pcie2x1l0: vcc3v3-pcie2x1l0 {compatible = "regulator-fixed";regulator-name = "vcc3v3_pcie2x1l0";regulator-min-microvolt = <3300000>;regulator-max-microvolt = <3300000>;enable-active-high;regulator-boot-on;regulator-always-on;gpios = <&gpio1 RK_PD2 GPIO_ACTIVE_HIGH>;startup-delay-us = <50000>;vin-supply = <&vcc5v0_sys>;};vcc3v3_pcie30: vcc3v3-pcie30 {compatible = "regulator-fixed";regulator-name = "vcc3v3_pcie30";regulator-min-microvolt = <3300000>;regulator-max-microvolt = <3300000>;enable-active-high;gpios = <&gpio1 RK_PA4 GPIO_ACTIVE_HIGH>;startup-delay-us = <5000>;vin-supply = <&vcc5v0_sys>;};}&pcie2x1l0 {reset-gpios = <&gpio4 RK_PA5 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie2x1l0>;status = "okay";
};&combphy1_ps {status = "okay";
};&pcie30phy {rockchip,pcie30-phymode = <PHY_MODE_PCIE_AGGREGATION>;status = "okay";
};&pcie3x4 {reset-gpios = <&gpio4 RK_PB6 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};

pcie30phy、combphy1_ps:PHY 节点

pcie3x4、pcie2x1l0:pcie3x4 控制器节点

reset-gpios:复位引脚属性

vcc3v3_pcie2x1l0、vcc3v3_pcie30:供电引脚节点

4.4 其他PCIE配置的实例

RK3588的控制器和PHY较多,按配置要点进⾏配置即可,这⾥还有⼏个典型范例供参考:

4.4.1 ⽰例1 pcie3.0phy拆分2个2Lane RC, 3个PCIe 2.0 1Lane

/ {vcc3v3_pcie30: vcc3v3-pcie30 {compatible = "regulator-fixed";regulator-name = "vcc3v3_pcie30";regulator-min-microvolt = <3300000>;regulator-max-microvolt = <3300000>;enable-active-high;gpios = <&gpio3 RK_PC3 GPIO_ACTIVE_HIGH>;startup-delay-us = <5000>;vin-supply = <&vcc12v_dcin>;};
};&combphy0_ps {status = "okay";
};
&combphy1_ps {status = "okay";
};
&combphy2_psu {status = "okay";
};
&pcie2x1l0 {phys = <&combphy1_ps PHY_TYPE_PCIE>;reset-gpios = <&gpio4 RK_PA5 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie2x1l1 {phys = <&combphy2_psu PHY_TYPE_PCIE>;reset-gpios = <&gpio4 RK_PA2 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie2x1l2 {reset-gpios = <&gpio4 RK_PC1 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie30phy {/*pcie30phy的组合使⽤模式:PHY_MODE_PCIE_NANBNB  /* P1:PCIe3x2 + P0:PCIe3x2 */PHY_MODE_PCIE_NANBBI  /* P1:PCIe3x2 + P0:PCIe3x1*2 */PHY_MODE_PCIE_NABINB  /* P1:PCIe3x1*2 + P0:PCIe3x2 */PHY_MODE_PCIE_NABIBI  /* P1:PCIe3x1*2 + P0:PCIe3x1*2 */*/rockchip,pcie30-phymode = <PHY_MODE_PCIE_NANBNB>;status = "okay";
};
&pcie3x2 {reset-gpios = <&gpio4 RK_PB0 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie3x4 {num-lanes = <2>;//拆分为2lan使用reset-gpios = <&gpio4 RK_PB6 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};

4.4.2 ⽰例2 pcie3.0phy拆分为4个1Lane, 1个使⽤PCIe 2.0 1 Lane

/ {vcc3v3_pcie30: vcc3v3-pcie30 {compatible = "regulator-fixed";regulator-name = "vcc3v3_pcie30";regulator-min-microvolt = <3300000>;regulator-max-microvolt = <3300000>;enable-active-high;gpios = <&gpio3 RK_PC3 GPIO_ACTIVE_HIGH>;startup-delay-us = <5000>;vin-supply = <&vcc12v_dcin>;};
};
&combphy0_ps {status = "okay";
};
&pcie2x1l0 {phys = <&pcie30phy>;reset-gpios = <&gpio4 RK_PA5 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie2x1l1 {phys = <&pcie30phy>;reset-gpios = <&gpio4 RK_PA2 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie2x1l2 {reset-gpios = <&gpio4 RK_PC1 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie30phy {rockchip,pcie30-phymode = <PHY_MODE_PCIE_NABIBI>;status = "okay";
};
&pcie3x2 {num-lanes = <1>;reset-gpios = <&gpio4 RK_PB0 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};
&pcie3x4 {num-lanes = <1>;reset-gpios = <&gpio4 RK_PB6 GPIO_ACTIVE_HIGH>;vpcie3v3-supply = <&vcc3v3_pcie30>;status = "okay";
};

pcie30phy拆分为4个1Lane时,port0lane0固定配合pcie3x4控制器,pcie3phy的port0lane1固定配合pcie2x1l0控制器,port1lane0固定配合pcie3x2控制器,pcie3phy的port1lane1固定配合pcie2x1l1控制器,加上combphy0_ps固定配合pcie2x1l2。

这篇关于Banana Pi BPI-W3 RK3588平台驱动调试篇 [ PCIE篇一 ] - PCIE的开发指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/274662

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短