Janus: Data-Centric MoE 通讯成本分析(2)

2023-10-24 02:52

本文主要是介绍Janus: Data-Centric MoE 通讯成本分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章链接:Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

发表会议: ACM SIGCOMM 2023 (计算机网络顶会)

系统学习:Janus: 逆向思维,以数据为中心的MoE训练范式(1)

目录

  • 前言
  • 通讯成本分析
    • 1. Expert Parallelism and all-to-all
    • 2. Traffic Comparison between D-C. and E-C.
    • 3. Communication Efficiency Analysis
      • A. Forward Phase
      • B. Backward Phase
      • C. Ratio measure
  • Be Janus

前言

在之前的blog中,我们学习了Janus的理论基础和模型搭建。基于专家的规模小于数据规模的假设,作者得到了Data-Centric的思想灵感,并验证了算法的有效性。
通过Data-Centric这一范式思路和巧妙的读取测略,Janus极大的减少了算法的通讯成本。这篇blog将从数学的角度定量解读Janus是如何降低通讯开销的。

通讯成本分析

1. Expert Parallelism and all-to-all

在这里插入图片描述
一个MoE模型的尺寸可能会大到超过单个gpu的能力。为了在gpu上训练一个大规模的MoE模型,专家并行(Expert Parallelism,EP)被提出并得到广泛应用。

右图显示了EP的概念。专家并行是将专家层划分为几个部分,并分配给GPU。每个GPU中都有专家层的专家,不同的GPU中有不同的专家。对于MoE模型的其他部分(如attention layer和Gate),每个GPU持有一个独立的副本

在这里插入图片描述
目前EP的实现默认是以专家为中心的。图(a)说明了以专家为中心的训练过程。当MoE块处理token序列时,gate需要为每个token分配专家,而token由gate分发到承载分配专家的gpu。

这种token到gpu的分发是由一个all-to-all通信原语完成的,因为由gpu生成的令牌的目标gpu很可能包括所有的gpu。token被指定的专家处理后,需要将结果发送回其原始的gpu,这需要再次进行all-to-all通信。由于MoE模型通常具有多个MoE块,因此MoE模型的训练可能涉及到多次的all-to-all通信操作。


2. Traffic Comparison between D-C. and E-C.

模型
参数
MoE-BertMoE-GPTMoE-Transformer-xl
Batch size B B B25625664
Seq-lenth S S S12864512
Top-K in Gate242
Expert dim. H H H768768256
MoE Block4112
Total block121212
Expert num16    3216    3216    32
GPU num16    3216    3216    32
Model Size(B)0.42   0.730.23   0.310.11   0.21
E-C. Traffic(GB)6   91.5   2.256   9
D-C. Traffic(GB)0.56   1.690.14   0.420.19   0.56

上表展示了以专家为中心的范式(E-C.)和数据中心范式(D-C.)的模型配置和通讯成本大小。
可以看到,在相同的模型配置下,D-C.的通讯量明显低于E-C.


3. Communication Efficiency Analysis

由于整个系统的通信瓶颈在于节点间通信而非节点内通信,故将节点间通信量作为衡量训练系统潜在通信效率的指标。

记号含义
n n n设备数量
m m m每个设备的工作进程
E E E每个工作进程的专家数量
H H H向专家输入的token的维度
T T T工作进程生成的token数
k k k门参数 top-K
B B B每个工作进程的训练任务的批量大小
S S S训练任务的序列长度

A. Forward Phase

在MoE模型中,每个Expert通常是一个由两个线性层组成的前馈网络(FFN)。对于一个FFN模块,第一层包括一个形状为 H ∗ 4 H H*4H H4H 的矩阵,第二层包括一个形状为 4 H ∗ H 4H*H 4HH 的矩阵。因此,一个FFN模块的大小为 8 H 2 8H^{2} 8H2

每个工作进程都有专家,每台设备就有专家。由于每台设备都需要将这些专家广播给其他 n − 1 n−1 n1 台设备,因此在MoE块的训练过程中,D-C.的通讯量为:
C o m m D C = 8 H 2 E m ( n − 1 ) Comm_{DC}=8H^{2}Em(n-1) CommDC=8H2Em(n1)

E-C.的训练系统中,专家之间的token分配通常是不平衡的。完成通信所需的时间取决于发送/接收数据量最大的设备。显然,非平衡分布下的通信时间几乎总是比平衡分布下的通信时间长

现在计算E-C.的训练系统中要传输的token大小,即节点间通信量。每个工作进程生成token,然后一个 m-worker (GPU)设备可以生成 m T mT mT 个token。

在token均衡分配的假设下,token被发送到其他设备的百分比为 n − 1 n \frac{n-1}{n} nn1。在E-C.中,MoE型块需要在前向计算阶段执行all-to-all通信操作。因此,MoE块中以E-C.的通信量为:
C o m m E C = 2 m H T ⋅ n − 1 n Comm_{EC}=2mHT\cdot \frac{n-1}{n} CommEC=2mHTnn1


B. Backward Phase

对于后向阶段,在E-C.中,系统需要传输生成梯度所需的所有中间结果,并且这个量等于它在前向阶段中发送的token的量

D-C.中,系统可以重用在前向阶段提取和缓存的专家。在专家模块计算出梯度后,梯度应该被发送回原始工作进程。梯度的大小与拉取的专家模型相同,通信方向相反。

此外,同一个专家在一台设备上的多个梯度被减少和合并,然后被送回。因此,在D-C.中,后向阶段中的通讯量也等于前向阶段中的通讯量


C. Ratio measure

在分析了两种模式的通讯量后,文章定义了一个度量 R R R 来评估 D-C. 的理论增益,它是两种范式下节点间通信量的比率:
R = C o m m E C C o m m D C = T 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{T}{4nHE} R=CommDCCommEC=4nHET

给定训练参数可以计算出token的数量 T T T,包括批大小 B B B、序列长度 S S S 以及与相关的Gate参数 top-K: k k k T = B S k T=BSk T=BSk 于是有:
R = C o m m E C C o m m D C = B S k 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{BSk}{4nHE} R=CommDCCommEC=4nHEBSk

R > 1 R>1 R>1 表明D-C.效率优于E-C.效率。


Be Janus

Janus是一个以专家为中心的范式和以数据为中心的范式的统一框架。Janus在混合专家模型模型的训练开始前进行评估。

对于其中 R ≤ 1 R\le 1 R1 的MoE块,Janus默认使用专家中心范式。
对于其中 R ≥ 1 R\ge 1 R1 的MoE块,Janus将使用以数据为中心的范式。

这篇关于Janus: Data-Centric MoE 通讯成本分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/272252

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

Java Websocket实例【服务端与客户端实现全双工通讯】

Java Websocket实例【服务端与客户端实现全双工通讯】 现很多网站为了实现即时通讯,所用的技术都是轮询(polling)。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发 出HTTP request,然后由服务器返回最新的数据给客服端的浏览器。这种传统的HTTP request 的模式带来很明显的缺点 – 浏 览器需要不断的向服务器发出请求,然而HTTP