Janus: Data-Centric MoE 通讯成本分析(2)

2023-10-24 02:52

本文主要是介绍Janus: Data-Centric MoE 通讯成本分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章链接:Janus: A Unified Distributed Training Framework for Sparse Mixture-of-Experts Models

发表会议: ACM SIGCOMM 2023 (计算机网络顶会)

系统学习:Janus: 逆向思维,以数据为中心的MoE训练范式(1)

目录

  • 前言
  • 通讯成本分析
    • 1. Expert Parallelism and all-to-all
    • 2. Traffic Comparison between D-C. and E-C.
    • 3. Communication Efficiency Analysis
      • A. Forward Phase
      • B. Backward Phase
      • C. Ratio measure
  • Be Janus

前言

在之前的blog中,我们学习了Janus的理论基础和模型搭建。基于专家的规模小于数据规模的假设,作者得到了Data-Centric的思想灵感,并验证了算法的有效性。
通过Data-Centric这一范式思路和巧妙的读取测略,Janus极大的减少了算法的通讯成本。这篇blog将从数学的角度定量解读Janus是如何降低通讯开销的。

通讯成本分析

1. Expert Parallelism and all-to-all

在这里插入图片描述
一个MoE模型的尺寸可能会大到超过单个gpu的能力。为了在gpu上训练一个大规模的MoE模型,专家并行(Expert Parallelism,EP)被提出并得到广泛应用。

右图显示了EP的概念。专家并行是将专家层划分为几个部分,并分配给GPU。每个GPU中都有专家层的专家,不同的GPU中有不同的专家。对于MoE模型的其他部分(如attention layer和Gate),每个GPU持有一个独立的副本

在这里插入图片描述
目前EP的实现默认是以专家为中心的。图(a)说明了以专家为中心的训练过程。当MoE块处理token序列时,gate需要为每个token分配专家,而token由gate分发到承载分配专家的gpu。

这种token到gpu的分发是由一个all-to-all通信原语完成的,因为由gpu生成的令牌的目标gpu很可能包括所有的gpu。token被指定的专家处理后,需要将结果发送回其原始的gpu,这需要再次进行all-to-all通信。由于MoE模型通常具有多个MoE块,因此MoE模型的训练可能涉及到多次的all-to-all通信操作。


2. Traffic Comparison between D-C. and E-C.

模型
参数
MoE-BertMoE-GPTMoE-Transformer-xl
Batch size B B B25625664
Seq-lenth S S S12864512
Top-K in Gate242
Expert dim. H H H768768256
MoE Block4112
Total block121212
Expert num16    3216    3216    32
GPU num16    3216    3216    32
Model Size(B)0.42   0.730.23   0.310.11   0.21
E-C. Traffic(GB)6   91.5   2.256   9
D-C. Traffic(GB)0.56   1.690.14   0.420.19   0.56

上表展示了以专家为中心的范式(E-C.)和数据中心范式(D-C.)的模型配置和通讯成本大小。
可以看到,在相同的模型配置下,D-C.的通讯量明显低于E-C.


3. Communication Efficiency Analysis

由于整个系统的通信瓶颈在于节点间通信而非节点内通信,故将节点间通信量作为衡量训练系统潜在通信效率的指标。

记号含义
n n n设备数量
m m m每个设备的工作进程
E E E每个工作进程的专家数量
H H H向专家输入的token的维度
T T T工作进程生成的token数
k k k门参数 top-K
B B B每个工作进程的训练任务的批量大小
S S S训练任务的序列长度

A. Forward Phase

在MoE模型中,每个Expert通常是一个由两个线性层组成的前馈网络(FFN)。对于一个FFN模块,第一层包括一个形状为 H ∗ 4 H H*4H H4H 的矩阵,第二层包括一个形状为 4 H ∗ H 4H*H 4HH 的矩阵。因此,一个FFN模块的大小为 8 H 2 8H^{2} 8H2

每个工作进程都有专家,每台设备就有专家。由于每台设备都需要将这些专家广播给其他 n − 1 n−1 n1 台设备,因此在MoE块的训练过程中,D-C.的通讯量为:
C o m m D C = 8 H 2 E m ( n − 1 ) Comm_{DC}=8H^{2}Em(n-1) CommDC=8H2Em(n1)

E-C.的训练系统中,专家之间的token分配通常是不平衡的。完成通信所需的时间取决于发送/接收数据量最大的设备。显然,非平衡分布下的通信时间几乎总是比平衡分布下的通信时间长

现在计算E-C.的训练系统中要传输的token大小,即节点间通信量。每个工作进程生成token,然后一个 m-worker (GPU)设备可以生成 m T mT mT 个token。

在token均衡分配的假设下,token被发送到其他设备的百分比为 n − 1 n \frac{n-1}{n} nn1。在E-C.中,MoE型块需要在前向计算阶段执行all-to-all通信操作。因此,MoE块中以E-C.的通信量为:
C o m m E C = 2 m H T ⋅ n − 1 n Comm_{EC}=2mHT\cdot \frac{n-1}{n} CommEC=2mHTnn1


B. Backward Phase

对于后向阶段,在E-C.中,系统需要传输生成梯度所需的所有中间结果,并且这个量等于它在前向阶段中发送的token的量

D-C.中,系统可以重用在前向阶段提取和缓存的专家。在专家模块计算出梯度后,梯度应该被发送回原始工作进程。梯度的大小与拉取的专家模型相同,通信方向相反。

此外,同一个专家在一台设备上的多个梯度被减少和合并,然后被送回。因此,在D-C.中,后向阶段中的通讯量也等于前向阶段中的通讯量


C. Ratio measure

在分析了两种模式的通讯量后,文章定义了一个度量 R R R 来评估 D-C. 的理论增益,它是两种范式下节点间通信量的比率:
R = C o m m E C C o m m D C = T 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{T}{4nHE} R=CommDCCommEC=4nHET

给定训练参数可以计算出token的数量 T T T,包括批大小 B B B、序列长度 S S S 以及与相关的Gate参数 top-K: k k k T = B S k T=BSk T=BSk 于是有:
R = C o m m E C C o m m D C = B S k 4 n H E R=\frac{Comm_{EC}}{Comm_{DC}}=\frac{BSk}{4nHE} R=CommDCCommEC=4nHEBSk

R > 1 R>1 R>1 表明D-C.效率优于E-C.效率。


Be Janus

Janus是一个以专家为中心的范式和以数据为中心的范式的统一框架。Janus在混合专家模型模型的训练开始前进行评估。

对于其中 R ≤ 1 R\le 1 R1 的MoE块,Janus默认使用专家中心范式。
对于其中 R ≥ 1 R\ge 1 R1 的MoE块,Janus将使用以数据为中心的范式。

这篇关于Janus: Data-Centric MoE 通讯成本分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/272252

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb