NLP(8): 专家系统和good turning smoothing

2023-10-23 13:30

本文主要是介绍NLP(8): 专家系统和good turning smoothing,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一节:Good-Turning Smoothing

N c N_c Nc:出现c次的单词的个数
在这里插入图片描述

这篇关于NLP(8): 专家系统和good turning smoothing的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/268145

相关文章

【UVA】1619-Feel Good(数据结构-栈)

既然所有数都是大于等于0的,那么在一个区间最小值一定的情况下,这个区间越长越好(当然有特殊情况) 对一个数a[i],left[i]代表左边第一个比它小的,right[i]代表右边第一个比它小的 如何构造left[i]呢?,从左往右构造一个单调递增的栈(一定是单调的!) 当a[i]比栈顶元素小的时候,栈顶元素出栈,(否则的话入栈,left[i]就是栈顶元素的位置,right数组同理可得

【python 走进NLP】两两求相似度,得到一条文本和其他文本最大的相似度

应用场景: 一个数据框里面文本,两两求相似度,得到一条文本和其他文本最大的相似度。 content source_id0 丰华股份军阀割据发生的故事大概多少w 11 丰华股份军阀割据发生的故事大概多少 22 丰华股份军阀割据发生的故事大概多少 33 丰华股份军阀割据发生的故事大概多少

【Python 走进NLP】NLP词频统计和处理停用词,可视化

# coding=utf-8import requestsimport sysreload(sys)sys.setdefaultencoding('utf-8')from lxml import etreeimport timetime1=time.time()import bs4import nltkfrom bs4 import BeautifulSoupfrom

【java 走进NLP】simhash 算法计算两篇文章相似度

python 计算两篇文章的相似度算法simhash见: https://blog.csdn.net/u013421629/article/details/85052915 对长文本 是比较合适的(超过500字以上) 下面贴上java 版本实现: pom.xml 加入依赖 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</a

【python 走进NLP】simhash 算法计算两篇文章相似度

互联网网页存在大量的重复内容网页,无论对于搜索引擎的网页去重和过滤、新闻小说等内容网站的内容反盗版和追踪,还是社交媒体等文本去重和聚类,都需要对网页或者文本进行去重和过滤。最简单的文本相似性计算方法可以利用空间向量模型,计算分词后的文本的特征向量的相似性,这种方法存在效率的严重弊端,无法针对海量的文本进行两两的相似性判断。模仿生物学指纹的特点,对每个文本构造一个指纹,来作为该文本的标识,从形式上来

【python 走进NLP】文本相似度各种距离计算

计算文本相似度有什么用? 1、反垃圾文本的捞取 “诚聘淘宝兼职”、“诚聘打字员”…这样的小广告满天飞,作为网站或者APP的运营者,不可能手动将所有的广告文本放入屏蔽名单里,挑几个典型广告文本,与它满足一定相似度就进行屏蔽。 2、推荐系统 在微博和各大BBS上,每一篇文章/帖子的下面都有一个推荐阅读,那就是根据一定算法计算出来的相似文章。 3、冗余过滤 我们每天接触过量的信息,信息之间存在大量

【python 走进NLP】句子相似度计算--余弦相似度

余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。 github 参考链接:https://github.com/ZhanPwBibiBibi/CHlikelihood # -*- coding: utf-8 -*-import jiebaimport numpy as npimpor

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

GNN中的Over-smoothing与Over-squashing问题

Over-squashing (过度压缩,顾名思义就是数据被“压缩”的过分小了,导致学不到什么东西。) 1、 why 会被压缩的过分小? 可能因为网络过深,那么在多层传播后,信息可能会被过度压缩(本质是特征减少了,当层数过多时会大大杂糅信息,导致特征减少,输出维度过小也会),导致细节丢失。 2、why 学不到什么东西? 会加剧梯度消失的现象,导致早期层几乎不学习,从而使得输入信息的重要细

NLP文本相似度之LCS

基础 LCS(Longest Common Subsequence)通常指的是最长公共子序列,区别最长公共字串(Longest Common Substring)。我们先从子序列的定义理解: 一个序列S任意删除若干个字符得到新的序列T,则T叫做S的子序列。 子序列和子串的一个很大的不同点是,子序列不要求连接,而子串要求连接。 两个序列X和Y的公共子序列中,长度最长的那个,定义为X和Y