Introduction to Advanced Machine Learning, 第二周,Tensorflow-task(hse-aml/intro-to-dl,简单注释,答案,附图)

本文主要是介绍Introduction to Advanced Machine Learning, 第二周,Tensorflow-task(hse-aml/intro-to-dl,简单注释,答案,附图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是俄罗斯高等经济学院的系列课程第一门,Introduction to Advanced Machine Learning,第二周第一个编程作业。
这个作业一共两个任务,难易程度:容易。
1. 熟悉TensorFlow,计算RMS
2. 使用Logistic Regress对MNIST图片进行分类,是一个二元分类问题。

Going deeper with Tensorflow

In this video, we’re going to study the tools you’ll use to build deep learning models. Namely, Tensorflow.

If you’re running this notebook outside the course environment, you’ll need to install tensorflow:
* pip install tensorflow should install cpu-only TF on Linux & Mac OS
* If you want GPU support from offset, see TF install page

import sys
sys.path.append("..")
import grading

Visualization

Plase note that if you are running on the Coursera platform, you won’t be able to access the tensorboard instance due to the network setup there. If you run the notebook locally, you should be able to access TensorBoard on http://127.0.0.1:7007/

! killall tensorboard
import os
os.system("tensorboard --logdir=/tmp/tboard --port=7007 &");
/bin/sh: 1: killall: not found
import tensorflow as tf
s = tf.InteractiveSession()

Warming up

For starters, let’s implement a python function that computes the sum of squares of numbers from 0 to N-1.

import numpy as np
def sum_sin(N):return np.sum(np.arange(N)**2)
%%time
sum_sin(10**8)
CPU times: user 412 ms, sys: 344 ms, total: 756 ms
Wall time: 1.06 s662921401752298880

Tensoflow teaser

Doing the very same thing

# An integer parameter
N = tf.placeholder('int64', name="input_to_your_function")# A recipe on how to produce the same result
result = tf.reduce_sum(tf.range(N)**2)
result
<tf.Tensor 'Sum:0' shape=() dtype=int64>
%%time
#result.eval({N: 10**8})
s.run(result,{N:10**8})
CPU times: user 488 ms, sys: 144 ms, total: 632 ms
Wall time: 477 ms662921401752298880
writer = tf.summary.FileWriter("/tmp/tboard", graph=s.graph)

How does it work?

  1. Define placeholders where you’ll send inputs
  2. Make symbolic graph: a recipe for mathematical transformation of those placeholders
  3. Compute outputs of your graph with particular values for each placeholder
    • output.eval({placeholder:value})
    • s.run(output, {placeholder:value})

So far there are two main entities: “placeholder” and “transformation”
* Both can be numbers, vectors, matrices, tensors, etc.
* Both can be int32/64, floats, booleans (uint8) of various size.

  • You can define new transformations as an arbitrary operation on placeholders and other transformations
    • tf.reduce_sum(tf.arange(N)**2) are 3 sequential transformations of placeholder N
    • There’s a tensorflow symbolic version for every numpy function
    • a+b, a/b, a**b, ... behave just like in numpy
    • np.mean -> tf.reduce_mean
    • np.arange -> tf.range
    • np.cumsum -> tf.cumsum
    • If if you can’t find the op you need, see the docs.

tf.contrib has many high-level features, may be worth a look.

with tf.name_scope("Placeholders_examples"):# Default placeholder that can be arbitrary float32# scalar, vertor, matrix, etc.arbitrary_input = tf.placeholder('float32')# Input vector of arbitrary lengthinput_vector = tf.placeholder('float32', shape=(None,))# Input vector that _must_ have 10 elements and integer typefixed_vector = tf.placeholder('int32', shape=(10,))# Matrix of arbitrary n_rows and 15 columns# (e.g. a minibatch your data table)input_matrix = tf.placeholder('float32', shape=(None, 15))# You can generally use None whenever you don't need a specific shapeinput1 = tf.placeholder('float64', shape=(None, 100, None))input2 = tf.placeholder('int32', shape=(None, None, 3, 224, 224))# elementwise multiplicationdouble_the_vector = input_vector*2# elementwise cosineelementwise_cosine = tf.cos(input_vector)# difference between squared vector and vector itself plus onevector_squares = input_vector**2 - input_vector + 1
my_vector =  tf.placeholder('float32', shape=(None,), name="VECTOR_1")
my_vector2 = tf.placeholder('float32', shape=(None,))
my_transformation = my_vector * my_vector2 / (tf.sin(my_vector) + 1)
print(my_transformation)
Tensor("truediv:0", shape=(?,), dtype=float32)
dummy = np.arange(5).astype('float32')
print(dummy)
my_transformation.eval({my_vector:dummy, my_vector2:dummy[::-1]})
[ 0.  1.  2.  3.  4.]array([ 0.        ,  1.62913239,  2.09501147,  2.62899613,  0.        ], dtype=float32)
writer.add_graph(my_transformation.graph)
writer.flush()

TensorBoard allows writing scalars, images, audio, histogram. You can read more on tensorboard usage here.

Summary

  • Tensorflow is based on computation graphs
  • The graphs consist of placehlders and transformations

Mean squared error

Your assignment is to implement mean squared error in tensorflow.

with tf.name_scope("MSE"):y_true = tf.placeholder("float32", shape=(None,), name="y_true")y_predicted = tf.placeholder("float32", shape=(None,), name="y_predicted")# Your code goes here# You want to use tf.reduce_mean# mse = tf.<...>mse = tf.reduce_mean((y_true - y_predicted)**2)
def compute_mse(vector1, vector2):return mse.eval({y_true: vector1, y_predicted: vector2})
writer.add_graph(mse.graph)
writer.flush()

Tests and result submission. Please use the credentials obtained from the Coursera assignment page.

Variables

The inputs and transformations have no value outside function call. This isn’t too comfortable if you want your model to have parameters (e.g. network weights) that are always present, but can change their value over time.

Tensorflow solves this with tf.Variable objects.
* You can assign variable a value at any time in your graph
* Unlike placeholders, there’s no need to explicitly pass values to variables when s.run(...)-ing
* You can use variables the same way you use transformations

# Creating a shared variable
shared_vector_1 = tf.Variable(initial_value=np.ones(5),name="example_variable")
# Initialize variable(s) with initial values
s.run(tf.global_variables_initializer())# Evaluating shared variable (outside symbolicd graph)
print("Initial value", s.run(shared_vector_1))# Within symbolic graph you use them just
# as any other inout or transformation, not "get value" needed
Initial value [ 1.  1.  1.  1.  1.]
# Setting a new value
s.run(shared_vector_1.assign(np.arange(5)))# Getting that new value
print("New value", s.run(shared_vector_1))
New value [ 0.  1.  2.  3.  4.]

tf.gradients - why graphs matter

  • Tensorflow can compute derivatives and gradients automatically using the computation graph
  • True to its name it can manage matrix derivatives
  • Gradients are computed as a product of elementary derivatives via the chain rule:

f(g(x))x=f(g(x))g(x)g(x)x ∂ f ( g ( x ) ) ∂ x = ∂ f ( g ( x ) ) ∂ g ( x ) ⋅ ∂ g ( x ) ∂ x

It can get you the derivative of any graph as long as it knows how to differentiate elementary operations

my_scalar = tf.placeholder('float32')scalar_squared = my_scalar**2# A derivative of scalar_squared by my_scalar
derivative = tf.gradients(scalar_squared, [my_scalar, ])
derivative
[<tf.Tensor 'gradients/pow_1_grad/Reshape:0' shape=<unknown> dtype=float32>]
import matplotlib.pyplot as plt
%matplotlib inlinex = np.linspace(-3, 3)
x_squared, x_squared_der = s.run([scalar_squared, derivative[0]],#What does the [0] mean?{my_scalar:x})plt.plot(x, x_squared,label="$x^2$")
plt.plot(x, x_squared_der, label=r"$\frac{dx^2}{dx}$")
plt.legend();
plt.grid()

!这里写图片描述

Why that rocks

my_vector = tf.placeholder('float32', [None])
# Compute the gradient of the next weird function over my_scalar and my_vector
# Warning! Trying to understand the meaning of that function may result in permanent brain damage
weird_psychotic_function = tf.reduce_mean((my_vector+my_scalar)**(1+tf.nn.moments(my_vector,[0])[1]) + 1./ tf.atan(my_scalar))/(my_scalar**2 + 1) + 0.01*tf.sin(2*my_scalar**1.5)*(tf.reduce_sum(my_vector)* my_scalar**2)*tf.exp((my_scalar-4)**2)/(1+tf.exp((my_scalar-4)**2))*(1.-(tf.exp(-(my_scalar-4)**2))/(1+tf.exp(-(my_scalar-4)**2)))**2der_by_scalar = tf.gradients(weird_psychotic_function, my_scalar)
der_by_vector = tf.gradients(weird_psychotic_function, my_vector)
# Plotting the derivative
scalar_space = np.linspace(1, 7, 100)y = [s.run(weird_psychotic_function, {my_scalar:x, my_vector:[1, 2, 3]})for x in scalar_space]plt.plot(scalar_space, y, label='function')y_der_by_scalar = [s.run(der_by_scalar,{my_scalar:x, my_vector:[1, 2, 3]})for x in scalar_space]plt.plot(scalar_space, y_der_by_scalar, label='derivative')
plt.grid()
plt.legend();

这里写图片描述

y_guess = tf.Variable(np.zeros(2, dtype='float32'))
y_true = tf.range(1, 3, dtype='float32')
loss = tf.reduce_mean((y_guess - y_true + tf.random_normal([2]))**2) 
#loss = tf.reduce_mean((y_guess - y_true)**2) 
#loss = -tf.reduce_mean(y_true * tf.log(y_guess) + (1-y_true) * tf.log(1-y_guess)) 
optimizer = tf.train.MomentumOptimizer(0.01, 0.5).minimize(loss, var_list=y_guess)
from matplotlib import animation, rc
import matplotlib_utils
from IPython.display import HTML, display_htmlfig, ax = plt.subplots()
y_true_value = s.run(y_true)
level_x = np.arange(0, 2, 0.02)
level_y = np.arange(0, 3, 0.02)
X, Y = np.meshgrid(level_x, level_y)
Z = (X - y_true_value[0])**2 + (Y - y_true_value[1])**2
ax.set_xlim(-0.02, 2)
ax.set_ylim(-0.02, 3)
s.run(tf.global_variables_initializer())
ax.scatter(*s.run(y_true), c='red')
contour = ax.contour(X, Y, Z, 10)
ax.clabel(contour, inline=1, fontsize=10)
line, = ax.plot([], [], lw=2)def init():line.set_data([], [])return (line,)guesses = [s.run(y_guess)]def animate(i):s.run(optimizer)guesses.append(s.run(y_guess))line.set_data(*zip(*guesses))return (line,)anim = animation.FuncAnimation(fig, animate, init_func=init,frames=400, interval=20, blit=True)

!这里写图片描述

try:display_html(HTML(anim.to_html5_video()))
# In case the build-in renderers are unaviable, fall back to
# a custom one, that doesn't require external libraries
except RuntimeError:anim.save(None, writer=matplotlib_utils.SimpleMovieWriter(0.001))

Logistic regression

Your assignment is to implement the logistic regression

Plan:
* Use a shared variable for weights
* Use a matrix placeholder for X

We shall train on a two-class MNIST dataset
* please note that target y are {0,1} and not {-1,1} as in some formulae

from sklearn.datasets import load_digits
mnist = load_digits(2)X, y = mnist.data, mnist.targetprint("y [shape - %s]:" % (str(y.shape)), y[:10])
print("X [shape - %s]:" % (str(X.shape)))# input features is 64, number of examples is 360
y [shape - (360,)]: [0 1 0 1 0 1 0 0 1 1]
X [shape - (360, 64)]:
print('X:\n',X[:3,:10])
print('y:\n',y[:10])
plt.imshow(X[1].reshape([8,8]));
X:[[  0.   0.   5.  13.   9.   1.   0.   0.   0.   0.][  0.   0.   0.  12.  13.   5.   0.   0.   0.   0.][  0.   0.   1.   9.  15.  11.   0.   0.   0.   0.]]
y:[0 1 0 1 0 1 0 0 1 1]

!这里写图片描述

It’s your turn now!
Just a small reminder of the relevant math:

P(y=1|X)=σ(XW+b) P ( y = 1 | X ) = σ ( X ⋅ W + b )

loss=log(P(ypredicted=1))ytruelog(1P(ypredicted=1))(1ytrue) loss = − log ⁡ ( P ( y predicted = 1 ) ) ⋅ y true − log ⁡ ( 1 − P ( y predicted = 1 ) ) ⋅ ( 1 − y true )

σ(x) σ ( x ) is available via tf.nn.sigmoid and matrix multiplication via tf.matmul

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

Your code goes here. For the training and testing scaffolding to work, please stick to the names in comments.

# Model parameters - weights and bias
# weights = tf.Variable(...) shape should be (X.shape[1], 1)
# b = tf.Variable(...)#weights = tf.Variable(np.zeros((X.shape[1],1 ), dtype='float32'))# input features is 64
#b = tf.Variable(np.zeros((1,1), dtype='float32'))weights = tf.Variable(tf.random_normal(shape=[X.shape[1], 1], mean=0, stddev = 0.01))
b = tf.Variable(0.0)
s.run(tf.global_variables_initializer())
# Placeholders for the input data
# input_X = tf.placeholder(...)
# input_y = tf.placeholder(...)
input_X = tf.placeholder("float32", shape=(None,None), name="input_X")# the shape is none * none to more adaptive.这里需要写成None × None,后面可适应性强
input_y = tf.placeholder("float32", shape=(None,), name="input_y")
# The model code# Compute a vector of predictions, resulting shape should be [input_X.shape[0],]
# This is 1D, if you have extra dimensions, you can  get rid of them with tf.squeeze .
# Don't forget the sigmoid.
# predicted_y = <predicted probabilities for input_X>
predicted_y = tf.sigmoid(tf.matmul(input_X,weights) + b)
predicted_y = tf.squeeze(predicted_y)# Loss. Should be a scalar number - average loss over all the objects
# tf.reduce_mean is your friend here
# loss = <logistic loss (scalar, mean over sample)>loss = -tf.reduce_mean(input_y * tf.log(predicted_y) + (1-input_y)* tf.log(1-predicted_y))
print(loss.shape)
#optimizer = tf.train.MomentumOptimizer(0.01, 0.5).minimize(loss)
optimizer = tf.train.AdamOptimizer(learning_rate = 0.01,beta1=0.9,beta2=0.999,epsilon=1e-08,).minimize(loss)
# See above for an example. tf.train.*Optimizer
# optimizer = <optimizer that minimizes loss>

A test to help with the debugging

validation_weights = 1e-3 * np.fromiter(map(lambda x:s.run(weird_psychotic_function, {my_scalar:x, my_vector:[1, 0.1, 2]}),0.15 * np.arange(1, X.shape[1] + 1)),count=X.shape[1], dtype=np.float32)[:, np.newaxis]
# Compute predictions for given weights and bias
prediction_validation = s.run(predicted_y, {input_X: X,weights: validation_weights,b: 1e-1})# Load the reference values for the predictions
validation_true_values = np.loadtxt("validation_predictons.txt")assert prediction_validation.shape == (X.shape[0],),\"Predictions must be a 1D array with length equal to the number " \"of examples in input_X"
assert np.allclose(validation_true_values, prediction_validation)
loss_validation = s.run(loss, {input_X: X[:100],input_y: y[-100:],weights: validation_weights+1.21e-3,b: -1e-1})
assert np.allclose(loss_validation, 0.728689)
from sklearn.metrics import roc_auc_score
s.run(tf.global_variables_initializer())
for i in range(5):s.run(optimizer, {input_X: X_train, input_y: y_train})loss_i = s.run(loss, {input_X: X_train, input_y: y_train})print("loss at iter %i:%.4f" % (i, loss_i))print("train auc:", roc_auc_score(y_train, s.run(predicted_y, {input_X:X_train})))print("test auc:", roc_auc_score(y_test, s.run(predicted_y, {input_X:X_test})))

Coursera submission

grade_submitter = grading.Grader("BJCiiY8sEeeCnhKCj4fcOA")
test_weights = 1e-3 * np.fromiter(map(lambda x:s.run(weird_psychotic_function, {my_scalar:x, my_vector:[1, 2, 3]}),0.1 * np.arange(1, X.shape[1] + 1)),count=X.shape[1], dtype=np.float32)[:, np.newaxis]

First, test prediction and loss computation. This part doesn’t require a fitted model.

prediction_test = s.run(predicted_y, {input_X: X,weights: test_weights,b: 1e-1})
assert prediction_test.shape == (X.shape[0],),\"Predictions must be a 1D array with length equal to the number " \"of examples in X_test"
grade_submitter.set_answer("0ENlN", prediction_test)
loss_test = s.run(loss, {input_X: X[:100],input_y: y[-100:],weights: test_weights+1.21e-3,b: -1e-1})
# Yes, the X/y indices mistmach is intentional

这篇关于Introduction to Advanced Machine Learning, 第二周,Tensorflow-task(hse-aml/intro-to-dl,简单注释,答案,附图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/264447

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h