YOLOv5、YOLOv8改进:SEAttention 通道注意力机制

2023-10-22 22:30

本文主要是介绍YOLOv5、YOLOv8改进:SEAttention 通道注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

目录

简介

SE 通道注意力机制

2.1 SE 通道注意力机制的定义与作用

2.2 SE过程: Squeeze + Excitation + Scale

3.YOLOV5改进

3.1首先common加入以下代码

3.2在yolo.py中进行注册

3.3yaml文件的配置,以yolov5s为参照


简介

SENet是2017年ImageNet比赛的冠军,2018年CVPR引用量第一

基于通道的注意力机制 源自于 CVPR2018: Squeeze-and-Excitation Networks

官方代码:GitHub - hujie-frank/SENet: Squeeze-and-Excitation Networks

较早的将attention引入到CNN中,模块化化设计。

SE模块的主要操作:挤压(Squeeze)、激励(Excitation

在这里插入图片描述

如图所示,其实就是将不同的通道赋予相关的权重。Attention机制用到这里用朴素的话说就是,把重要的通道赋予大的权重,然后将这些通道以及权重去线性组合。

至于这个权重是自己"学习"的。具体这样做,把每一个通道先下采样为一个实数,然后再通过两层全连接层,就会得到每个通道的权重。在训练构成中,这两个全连接层的参数也会和模型其他可训练参数一样一起更新。
 

SE模块是一个即插即用的模块,在上图中左边是在一个卷积模块之后直接插入SE模块,右边是在ResNet结构中添加了SE模块。

在这里插入图片描述

SE 通道注意力机制

2.1 SE 通道注意力机制的定义与作用

SE注意力机制,通过自动学习的方式,使用另外一个新的神经网络,获取到特征图的每个通道的重要程度,并赋值权重,从而让神经网络关注权重高的特征通道。

 作用为,提升对当前任务有用的特征图的通道,并抑制对当前任务用处不大的特征通道。同时,全连接FC网络根据loss损失来自动学习特征权重。
 

2.2 SE过程: Squeeze + Excitation + Scale


SE :Squeeze + Excitation + Scale

① 压缩Squeeze

 通过平均池化,将特征图合并压缩,从 H × W × channel,变为 1 × 1 × channel,后者的一个1×1就获得了原始特征图中 H × W 的感受野,

② 激发Excitation

 进行FC全连接,每个通道都生成一个权值,并归一化,同时也是 1 × 1 × channel

③ 还原Scale

 将原始图像乘以权值矩阵,[h,w,c]×[1,1,c] ==> [h,w,c]
 

3.YOLOV5改进

3.1首先common加入以下代码

class SEAttention(nn.Module):def __init__(self, channel=512,reduction=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)

3.2在yolo.py中进行注册

你准备的注意力机制都可以放在这里面

  elif m in [S2Attention, SimSPPF, ACmix, CrissCrossAttention, SOCA, ShuffleAttention, SEAttention, SimAM, SKAttention]:

3.3yaml文件的配置,以yolov5s为参照

# YOLOv5 🚀 by YOLOAir, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[-1, 1, SEAttention, [1024]],[[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

以上就是完整的改法

YOLOv8和YOLOv5都是一个作者,common变成了conv   yolo变成了task  其他都一样

这篇关于YOLOv5、YOLOv8改进:SEAttention 通道注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/263993

相关文章

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization