LeetCode动态规划基础题-股票买卖

2023-10-22 14:59

本文主要是介绍LeetCode动态规划基础题-股票买卖,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、股票买卖问题

股票买卖是一个大类

image-20220502101847058

1 买卖股票的最佳时机

  1. 买卖股票最佳的时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

1、确定dp数组

dp[i][0] 表示第i天持有的股票所得最多现金

dp[i][1] 表示第i天不持有股票的所得最多现金

2、递推公式

dp[i][0] 第i天持有股票

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

dp[i][0] = max(dp[i-1][0], -prices[i]);

dp[i][1] 第i天不持有股票

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0]

dp[i][1] = max(dp[i-1][1], dp[i][0] + prices[i]);

  1. dp数组初始化

根据dp定义进行初始化:

  • 第0天dp[0][0] -= prices[0]
  • 第0天dp[0][1] = 0;
  1. 遍历顺序

dp[i]由dp[i-1]而来,所以由前向后遍历

  1. 距离推导dp数组

以示例1,输入7,1,5,3,6,4]为例,dp数组状态如下:

121.买卖股票的最佳时机

2 买卖股票的最佳时机II

122.买卖股票的最佳时机II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

与上一题最大的区别就是可以买入多次,要统计利润总和

就是当天持有股票的价值:

dp[i][0] =max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2,0));dp[0][0] = -prices[0];dp[0][1] = 0;for(int i = 1; i <n; ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);}return dp[n-1][1];}
};

3 买卖股票的最佳时机III

123.买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

示例 2: 输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3: 输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

示例 4: 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^5

与之前不同的是,关键在于至多买卖两次,就是可以买卖一次,可以买卖两次,也可以不买卖

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作
  2. 第一次买入
  3. 第一次卖出
  4. 第二次买入
  5. 第二次卖出

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  1. 确定dp公式

dp[i][1]表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

dp[i][1]

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

dp[i][1] = max(dp[i-1][0] - price[i], dp[i-1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

dp[i][2] = max(dp[i-1][1] + pruce[i], dp[i-1][2])

同理:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作 dp[0][2] = 0

第0天做第二次买入的操作 dp[0][3] = -prices[0]

第0天做第二次卖出的操作 dp[0][4] = 0

  1. 遍历顺序

  2. 举例推导dp数组

123.买卖股票的最佳时机III

红色框为最后两次卖出的状态。最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。

最终最大利润是dp[4][4]

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(5,0));//dp[i][j]表示第i天下第j状态的最大利润// i = 1 第一次买入;i = 2 第一次卖出;i = 3 第二次买入; i= 4 第二次卖出dp[0][0] = 0;dp[0][1] = -prices[0];dp[0][2] = 0;dp[0][3] = -prices[0];dp[0][4] = 0;for(int i = 1; i<n; ++i){dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i]);dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i]);dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i]);dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i]);}return dp[n-1][4];}
};

4 买卖股票的最佳时机IV

188.买卖股票的最佳时机IV

与前面一题最大的区别就是变成了k次。

  1. dp初始化

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出

除了0以外,偶数就是卖出,奇数就是买入

要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

  1. 递推公式

与之前一样,但是通过1的规律,我们可以类比得出如下的状态转移

for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
  1. 初始化状态

可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];
}
  1. 确定遍历顺序

  2. 距离推导dp数组

188.买卖股票的最佳时机IV

class Solution {
public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];}for (int i = 1;i < prices.size(); i++) {for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[prices.size() - 1][2 * k];}
};

5 最佳买卖股票时机含冷冻期

309.最佳买卖股票时机含冷冻期

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

示例: 输入: [1,2,3,0,2] 输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

在总利润和的基础上加了一个冷冻期,状态变了

  1. 确定dp数组及下标含义
  • 状态一:买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
  • 卖出股票状态,这里就有两种卖出股票状态
    • 状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
    • 状态三:今天卖出了股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

注意这里的每一个状态,例如状态一,是买入股票状态并不是说今天已经就买入股票,而是说保存买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态

  1. 确定递推公式

(1)达到买入股票(状态1),既dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票状态(状态二),dp[i - 1][1] - prices[i]

所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]

那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);

(2) 达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

(3) 达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

  • 操作一:昨天一定是买入股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

(4) 达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

  • 操作一:昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
  1. 如何初始化

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],买入股票所剩现金为负数。

保持卖出股票状态(状态二),第0天没有卖出dp[0][1]初始化为0就行,

今天卖出了股票(状态三),同样dp[0][2]初始化为0,因为最少收益就是0,绝不会是负数。

同理dp[0][3]也初始为0。

  1. 确定遍历顺序
  2. 距离推导dp数组

309.最佳买卖股票时机含冷冻期

最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

6 买卖股票的最佳时机含手续费

714.买卖股票的最佳时机含手续费

与122不同的是,要算手续费,买是不需要算手续费的

dp方程

第i天持有股票即dp[i][0]

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

第i天不持有股票即dp[i][1]的情况

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee)

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee
class Solution {
public:int maxProfit(vector<int>& prices, int fee) {// 其实含手续费就是在卖出的时候不一样int n = prices.size();if(n <=1) return 0;vector<vector<int>> dp(n, vector<int>(2,0));dp[0][0] = -prices[0];dp[0][1] = 0;for(int i = 1; i < n; ++i){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return dp[n-1][1];}
};

二、股票问题总结

image-20220502160540356

这篇关于LeetCode动态规划基础题-股票买卖的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/262190

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事