BAIR论文:通过“元学习”和“一次性学习”算法,让机器人快速掌握新技能

本文主要是介绍BAIR论文:通过“元学习”和“一次性学习”算法,让机器人快速掌握新技能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们都知道,深度学习是在大数据的背景下火起来的,传统的基于梯度的深度神经网络需要大量的数据学习,而绝大多数的深度学习内容否基于大数据量下的广泛迭代训练,当遇到新信息时往往会出现模型失效的情况从而需要重新进行学习。在机器人领域,深度神经网络可以是机器人展示出复杂的技能,但在实际应用中,一旦环境发生变化,从头学习技能并不可行。因此,如何让机器“一次性学习”,即在“看”了一次演示后无需事先了解新的环境场景,能在不同环境中重复工作尤为重要。

研究发现,具有增强记忆能力的架构如神经图灵机(NTMs)可以快速编码和见多新信息,从而起到消除常规模型的缺点。在本论文中,作者介绍了一种元-模拟学习(Meta-Imitation Learning,MIL)算法,使机器人可以更有效学习如何自我学习,从而在一次演示后即可学得新的技能。与之前的单次学习模拟方法不同的是,这一方法可以扩展到原始像素输入,并且需要用于学习新技能的训练数据明显减少。从在模拟平台和真实的机器人平台上的试验也表明了这一点。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

目标:赋予机器人在只“看过”一次演示的情况下,学习与新物品互动的能力。

做法:

  • 收集大量任务的Demo;

  • 使用元-模拟学习进行训练;

  • 在未知的新任务中进行测试。


BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

创新内容:在第一个全连接层通过偏差转换增加梯度表现。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

模拟测试环节,这一环节使用算法提供的虚拟3D物品进行模拟,MIL比Contexual和LSTM更好地完成了任务。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

在实际场景测试环节,该团队设计了一个抓取物品并将其放到指定容器中的任务。从上图我们可以看到,在这一环节用于训练的物品与实际测试的物品无论在形状、大小、纹理上都有着差别,MIL算法同样较好地完成了任务。

BAIR论文:通过元学习和一次性学习算法,让机器人快速掌握新技能

雷锋网发现,除了BAIR,Google Deepmind(参见雷锋网(公众号:雷锋网)之前文章《只训练一次数据就能识别出物体,谷歌全新 AI 算法“单次学习”》)、OpenAI也有在进行关于“一次性学习”的研究。“一次性学习”通常被认为是计算机视觉中的对象分类问题,旨在从一个或仅少数几个训练图像中学习关于对象类别的信息,并且已经成功应用到包括计算机视觉和药物研发在内的具有高维数据的领域。今年5月,OpenAI也发布了类似的在虚拟场景下通过一次性学习,完成堆叠方块等任务的论文。

在《人类的由来》中,达尔文这样写道:“人和其他高等动物在精神上的差异虽然很大,但这种差别肯定只是程度上、而非种类上的差别。”而这些在一次性学习和元学习上的研究也证明,当前的人工智能与未来世界的超级人工智能之间的差异,或许也只是程度上的差异,而非种类上的差异。在深度学习发展的过程中,类似的优化看起来只是一小步,但加速化发展的趋势已经很明显:当你在阅读传统期刊上的论文时,在Arxiv上或许已经出现了新的替代版本。或许在不久之后,创造出更聪明、具有适应力的实用机器人并不是难事。



本文作者:岑大师
本文转自雷锋网禁止二次转载, 原文链接

这篇关于BAIR论文:通过“元学习”和“一次性学习”算法,让机器人快速掌握新技能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261581

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06