深度学习作业L5W1(3):Improvise a Jazz Solo with an LSTM Network

2023-10-22 12:10

本文主要是介绍深度学习作业L5W1(3):Improvise a Jazz Solo with an LSTM Network,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用LSTM创作爵士歌曲

数据处理

题目已经为我们做好,输入X是(60, 30, 78)的矩阵,代表60个歌曲,每个歌曲分30个时间片,一个时间片对应78个音符中的一个。

模型结构

在这里插入图片描述
一个LSTM上面套一个softmax

LSTM的隐藏状态a为64个

n_a = 64 
reshapor = Reshape((1, 78))                        # Used in Step 2.B of djmodel(), below
LSTM_cell = LSTM(n_a, return_state = True)         # Used in Step 2.C
densor = Dense(n_values, activation='softmax')     # Used in Step 2.D
# GRADED FUNCTION: djmodeldef djmodel(Tx, n_a, n_values):"""Implement the modelArguments:Tx -- length of the sequence in a corpusn_a -- the number of activations used in our modeln_values -- number of unique values in the music data Returns:model -- a keras model with the """# Define the input of your model with a shape X = Input(shape=(Tx, n_values))# Define s0, initial hidden state for the decoder LSTMa0 = Input(shape=(n_a,), name='a0')c0 = Input(shape=(n_a,), name='c0')a = a0c = c0### START CODE HERE ### # Step 1: Create empty list to append the outputs while you iterate (≈1 line)outputs = []# Step 2: Loopfor t in range(Tx):# Step 2.A: select the "t"th time step vector from X. x = Lambda(lambda x: X[:,t,:])(X)# Step 2.B: Use reshapor to reshape x to be (1, n_values) (≈1 line)x = reshapor(x)# Step 2.C: Perform one step of the LSTM_cella, _, c = LSTM_cell(x, initial_state=[a, c])# Step 2.D: Apply densor to the hidden state output of LSTM_Cellout = densor(a)# Step 2.E: add the output to "outputs"outputs.append(out)# Step 3: Create model instancemodel = Model(inputs=[X,a0,c0],outputs=outputs)### END CODE HERE ###return model

由于需要按照时间顺序输出一个列表,因此将LSTM单元等声明为全局变量,以保证我们每一次前向传播用的是相同的LSTM单元

model = djmodel(Tx = 30 , n_a = 64, n_values = 78)
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])m = 60
a0 = np.zeros((m, n_a))
c0 = np.zeros((m, n_a))
model.fit([X, a0, c0], list(Y), epochs=100)

完成模型训练

生成音乐

由于训练和sampling需要不同的模型(输入方式不同),因此再构建一个sample的model

# GRADED FUNCTION: music_inference_modeldef music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 100):"""Uses the trained "LSTM_cell" and "densor" from model() to generate a sequence of values.Arguments:LSTM_cell -- the trained "LSTM_cell" from model(), Keras layer objectdensor -- the trained "densor" from model(), Keras layer objectn_values -- integer, umber of unique valuesn_a -- number of units in the LSTM_cellTy -- integer, number of time steps to generateReturns:inference_model -- Keras model instance"""# Define the input of your model with a shape x0 = Input(shape=(1, n_values))# Define s0, initial hidden state for the decoder LSTMa0 = Input(shape=(n_a,), name='a0')c0 = Input(shape=(n_a,), name='c0')a = a0c = c0x = x0### START CODE HERE #### Step 1: Create an empty list of "outputs" to later store your predicted values (≈1 line)outputs = []# Step 2: Loop over Ty and generate a value at every time stepfor t in range(Ty):# Step 2.A: Perform one step of LSTM_cell (≈1 line)a, _, c = LSTM_cell(x, initial_state=[a, c])# Step 2.B: Apply Dense layer to the hidden state output of the LSTM_cell (≈1 line)out = densor(a)# Step 2.C: Append the prediction "out" to "outputs". out.shape = (None, 78) (≈1 line)outputs.append(out)# Step 2.D: Select the next value according to "out", and set "x" to be the one-hot representation of the#           selected value, which will be passed as the input to LSTM_cell on the next step. We have provided #           the line of code you need to do this. x = Lambda(one_hot)(out)# Step 3: Create model instance with the correct "inputs" and "outputs" (≈1 line)inference_model = Model(inputs=[x0,a0,c0],outputs=outputs)### END CODE HERE ###return inference_model
inference_model = music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 50)
x_initializer = np.zeros((1, 1, 78))
a_initializer = np.zeros((1, n_a))
c_initializer = np.zeros((1, n_a))
# GRADED FUNCTION: predict_and_sampledef predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer, c_initializer = c_initializer):"""Predicts the next value of values using the inference model.Arguments:inference_model -- Keras model instance for inference timex_initializer -- numpy array of shape (1, 1, 78), one-hot vector initializing the values generationa_initializer -- numpy array of shape (1, n_a), initializing the hidden state of the LSTM_cellc_initializer -- numpy array of shape (1, n_a), initializing the cell state of the LSTM_celReturns:results -- numpy-array of shape (Ty, 78), matrix of one-hot vectors representing the values generatedindices -- numpy-array of shape (Ty, 1), matrix of indices representing the values generated"""### START CODE HERE #### Step 1: Use your inference model to predict an output sequence given x_initializer, a_initializer and c_initializer.pred = inference_model.predict([x_initializer, a_initializer, c_initializer])# Step 2: Convert "pred" into an np.array() of indices with the maximum probabilitiesindices = np.argmax(pred, axis = -1)# Step 3: Convert indices to one-hot vectors, the shape of the results should be (1, )results = to_categorical(indices,num_classes=78)### END CODE HERE ###return results, indices

调用model.predict进行预测,同时将输出处理成onehot形式方便生成音乐

out_stream = generate_music(inference_model)
IPython.display.Audio('./data/30s_trained_model.mp3')

利用实验提供的方法生成了音乐

这篇关于深度学习作业L5W1(3):Improvise a Jazz Solo with an LSTM Network的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261366

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操