吴恩达深度学习5.1练习_Sequence Models_Improvise a Jazz Solo with LSTM

本文主要是介绍吴恩达深度学习5.1练习_Sequence Models_Improvise a Jazz Solo with LSTM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自吴恩达老师深度学习课程作业notebook
此篇练习没有细细研究,模型和生成恐龙名字模型差不多,使用Keras实现模型。自动生成音乐感觉挺有意思的,闲时再回头研究研究

Improvise a Jazz Solo with an LSTM Network

Welcome to your final programming assignment of this week! In this notebook, you will implement a model that uses an LSTM to generate music. You will even be able to listen to your own music at the end of the assignment.

You will learn to:

  • Apply an LSTM to music generation.
  • Generate your own jazz music with deep learning.

Please run the following cell to load all the packages required in this assignment. This may take a few minutes.

from __future__ import print_function
import IPython
import sys
from music21 import *
import numpy as np
from grammar import *
from qa import *
from preprocess import * 
from music_utils import *
from data_utils import *
from keras.models import load_model, Model
from keras.layers import Dense, Activation, Dropout, Input, LSTM, Reshape, Lambda, RepeatVector
from keras.initializers import glorot_uniform
from keras.utils import to_categorical
from keras.optimizers import Adam
from keras import backend as K
Using TensorFlow backend.

1 - Problem statement

You would like to create a jazz music piece specially for a friend’s birthday. However, you don’t know any instruments or music composition. Fortunately, you know deep learning and will solve this problem using an LSTM netwok.

You will train a network to generate novel jazz solos in a style representative of a body of performed work.

1.1 - Dataset

You will train your algorithm on a corpus of Jazz music. Run the cell below to listen to a snippet of the audio from the training set:

# IPython.display.Audio('./data/30s_seq.mp3')

We have taken care of the preprocessing of the musical data to render it in terms of musical “values.” You can informally think of each “value” as a note, which comprises a pitch and a duration. For example, if you press down a specific piano key for 0.5 seconds, then you have just played a note. In music theory, a “value” is actually more complicated than this–specifically, it also captures the information needed to play multiple notes at the same time. For example, when playing a music piece, you might press down two piano keys at the same time (playng multiple notes at the same time generates what’s called a “chord”). But we don’t need to worry about the details of music theory for this assignment. For the purpose of this assignment, all you need to know is that we will obtain a dataset of values, and will learn an RNN model to generate sequences of values.

Our music generation system will use 78 unique values. Run the following code to load the raw music data and preprocess it into values. This might take a few minutes.

X, Y, n_values, indices_values = load_music_utils()
print('shape of X:', X.shape)
print('number of training examples:', X.shape[0])
print('Tx (length of sequence):', X.shape[1])
print('total # of unique values:', n_values)
print('Shape of Y:', Y.shape)
shape of X: (60, 30, 78)
number of training examples: 60
Tx (length of sequence): 30
total # of unique values: 78
Shape of Y: (30, 60, 78)

You have just loaded the following:

  • X: This is an (m, T x T_x Tx, 78) dimensional array. We have m training examples, each of which is a snippet of T x = 30 T_x =30 Tx=30 musical values. At each time step, the input is one of 78 different possible values, represented as a one-hot vector. Thus for example, X[i,t,:] is a one-hot vector representating the value of the i-th example at time t.

  • Y: This is essentially the same as X, but shifted one step to the left (to the past). Similar to the dinosaurus assignment, we’re interested in the network using the previous values to predict the next value, so our sequence model will try to predict y ⟨ t ⟩ y^{\langle t \rangle} yt given x ⟨ 1 ⟩ , … , x ⟨ t ⟩ x^{\langle 1\rangle}, \ldots, x^{\langle t \rangle} x1,,xt. However, the data in Y is reordered to be dimension ( T y , m , 78 ) (T_y, m, 78) (Ty,m,78), where T y = T x T_y = T_x Ty=Tx. This format makes it more convenient to feed to the LSTM later.

  • n_values: The number of unique values in this dataset. This should be 78.

  • indices_values: python dictionary mapping from 0-77 to musical values.

1.2 - Overview of our model

Here is the architecture of the model we will use. This is similar to the Dinosaurus model you had used in the previous notebook, except that in you will be implementing it in Keras. The architecture is as follows:

We will be training the model on random snippets of 30 values taken from a much longer piece of music. Thus, we won’t bother to set the first input x ⟨ 1 ⟩ = 0 ⃗ x^{\langle 1 \rangle} = \vec{0} x1=0 , which we had done previously to denote the start of a dinosaur name, since now most of these snippets of audio start somewhere in the middle of a piece of music. We are setting each of the snippts to have the same length T x = 30 T_x = 30 Tx=30 to make vectorization easier.

2 - Building the model

In this part you will build and train a model that will learn musical patterns. To do so, you will need to build a model that takes in X of shape ( m , T x , 78 ) (m, T_x, 78) (m,Tx,78) and Y of shape ( T y , m , 78 ) (T_y, m, 78) (Ty,m,78). We will use an LSTM with 64 dimensional hidden states. Lets set n_a = 64.

n_a = 64 

Here’s how you can create a Keras model with multiple inputs and outputs. If you’re building an RNN where even at test time entire input sequence x ⟨ 1 ⟩ , x ⟨ 2 ⟩ , … , x ⟨ T x ⟩ x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, \ldots, x^{\langle T_x \rangle} x1,x2,,xTx were given in advance, for example if the inputs were words and the output was a label, then Keras has simple built-in functions to build the model. However, for sequence generation, at test time we don’t know all the values of x ⟨ t ⟩ x^{\langle t\rangle} xt in advance; instead we generate them one at a time using x ⟨ t ⟩ = y ⟨ t − 1 ⟩ x^{\langle t\rangle} = y^{\langle t-1 \rangle} xt=yt1. So the code will be a bit more complicated, and you’ll need to implement your own for-loop to iterate over the different time steps.

The function djmodel() will call the LSTM layer T x T_x Tx times using a for-loop, and it is important that all T x T_x Tx copies have the same weights. I.e., it should not re-initiaiize the weights every time—the T x T_x Tx steps should have shared weights. The key steps for implementing layers with shareable weights in Keras are:

  1. Define the layer objects (we will use global variables for this).
  2. Call these objects when propagating the input.

We have defined the layers objects you need as global variables. Please run the next cell to create them. Please check the Keras documentation to make sure you understand what these layers are: Reshape(), LSTM(), Dense().

reshapor = Reshape((1, 78))                        # Used in Step 2.B of djmodel(), below
LSTM_cell = LSTM(n_a, return_state = True)         # Used in Step 2.C
densor = Dense(n_values, activation='softmax')     # Used in Step 2.D

Each of reshapor, LSTM_cell and densor are now layer objects, and you can use them to implement djmodel(). In order to propagate a Keras tensor object X through one of these layers, use layer_object(X) (or layer_object([X,Y]) if it requires multiple inputs.). For example, reshapor(X) will propagate X through the Reshape((1,78)) layer defined above.

Exercise: Implement djmodel(). You will need to carry out 2 steps:

  1. Create an empty list “outputs” to save the outputs of the LSTM Cell at every time step.

  2. Loop for t ∈ 1 , … , T x t \in 1, \ldots, T_x t1,,Tx:

    A. Select the "t"th time-step vector from X. The shape of this selection should be (78,). To do so, create a custom Lambda layer in Keras by using this line of code:

           x = Lambda(lambda x: X[:,t,:])(X)

Look over the Keras documentation to figure out what this does. It is creating a “temporary” or “unnamed” function (that’s what Lambda functions are) that extracts out the appropriate one-hot vector, and making this function a Keras Layer object to apply to X.

B. Reshape x to be (1,78). You may find the `reshapor()` layer (defined below) helpful.C. Run x through one step of LSTM_cell. Remember to initialize the LSTM_cell with the previous step's hidden state $a$ and cell state $c$. Use the following formatting:
a, _, c = LSTM_cell(input_x, initial_state=[previous hidden state, previous cell state])
D. Propagate the LSTM's output activation value through a dense+softmax layer using `densor`. E. Append the predicted value to the list of "outputs"
# GRADED FUNCTION: djmodeldef djmodel(Tx, n_a, n_values):"""Implement the modelArguments:Tx -- length of the sequence in a corpusn_a -- the number of activations used in our modeln_values -- number of unique values in the music data Returns:model -- a keras model with the """# Define the input of your model with a shape X = Input(shape=(Tx, n_values))# Define s0, initial hidden state for the decoder LSTMa0 = Input(shape=(n_a,), name='a0')c0 = Input(shape=(n_a,), name='c0')a = a0c = c0### START CODE HERE ### # Step 1: Create empty list to append the outputs while you iterate (≈1 line)outputs = list()# Step 2: Loopfor t in range(Tx):# Step 2.A: select the "t"th time step vector from X. x = Lambda(lambda x: X[:,t,:])(X)# Step 2.B: Use reshapor to reshape x to be (1, n_values) (≈1 line)x = reshapor(x)#print(x.shape)# Step 2.C: Perform one step of the LSTM_cella, _, c = LSTM_cell(x, initial_state=[a, c])#(x, initial_state=[a, c])# Step 2.D: Apply densor to the hidden state output of LSTM_Cellout = densor(a)# Step 2.E: add the output to "outputs"outputs.append(out)# Step 3: Create model instancemodel = Model(inputs=[X,a0,c0], outputs=outputs)### END CODE HERE ###return model

Run the following cell to define your model. We will use Tx=30, n_a=64 (the dimension of the LSTM activations), and n_values=78. This cell may take a few seconds to run.

model = djmodel(Tx = 30 , n_a = 64, n_values = 78)

You now need to compile your model to be trained. We will Adam and a categorical cross-entropy loss.

opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])

Finally, lets initialize a0 and c0 for the LSTM’s initial state to be zero.

m = 60
a0 = np.zeros((m, n_a))
c0 = np.zeros((m, n_a))

Lets now fit the model! We will turn Y to a list before doing so, since the cost function expects Y to be provided in this format (one list item per time-step). So list(Y) is a list with 30 items, where each of the list items is of shape (60,78). Lets train for 100 epochs. This will take a few minutes.

model.fit([X, a0, c0], list(Y), epochs=100)
Epoch 1/100
60/60 [==============================] - 43s 721ms/step - loss: 125.7665 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0000e+00 - dense_1_acc_1: 0.0000e+00 - dense_1_acc_2: 0.1000 - dense_1_acc_3: 0.0667 - dense_1_acc_4: 0.0500 - dense_1_acc_5: 0.1000 - dense_1_acc_6: 0.0667 - dense_1_acc_7: 0.0833 - dense_1_acc_8: 0.0667 - dense_1_acc_9: 0.1000 - dense_1_acc_10: 0.1000 - dense_1_acc_11: 0.0833 - dense_1_acc_12: 0.1167 - dense_1_acc_13: 0.1000 - dense_1_acc_14: 0.0500 - dense_1_acc_15: 0.0667 - dense_1_acc_16: 0.1167 - dense_1_acc_17: 0.0333 - dense_1_acc_18: 0.0833 - dense_1_acc_19: 0.1000 - dense_1_acc_20: 0.0667 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.0333 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.0667 - dense_1_acc_25: 0.1000 - dense_1_acc_26: 0.1167 - dense_1_acc_27: 0.0667 - dense_1_acc_28: 0.1167 - dense_1_acc_29: 0.0000e+00                                                          
Epoch 2/100
60/60 [==============================] - 0s 4ms/step - loss: 122.3460 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.2167 - dense_1_acc_3: 0.2167 - dense_1_acc_4: 0.2833 - dense_1_acc_5: 0.1667 - dense_1_acc_6: 0.2000 - dense_1_acc_7: 0.2167 - dense_1_acc_8: 0.1333 - dense_1_acc_9: 0.2833 - dense_1_acc_10: 0.1333 - dense_1_acc_11: 0.1000 - dense_1_acc_12: 0.2667 - dense_1_acc_13: 0.1500 - dense_1_acc_14: 0.2000 - dense_1_acc_15: 0.2333 - dense_1_acc_16: 0.2167 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.2167 - dense_1_acc_19: 0.1500 - dense_1_acc_20: 0.2000 - dense_1_acc_21: 0.1667 - dense_1_acc_22: 0.2000 - dense_1_acc_23: 0.2000 - dense_1_acc_24: 0.1333 - dense_1_acc_25: 0.2167 - dense_1_acc_26: 0.1500 - dense_1_acc_27: 0.2333 - dense_1_acc_28: 0.1333 - dense_1_acc_29: 0.0000e+00
Epoch 3/100
60/60 [==============================] - 0s 4ms/step - loss: 116.1415 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.2333 - dense_1_acc_2: 0.2000 - dense_1_acc_3: 0.2333 - dense_1_acc_4: 0.2500 - dense_1_acc_5: 0.1167 - dense_1_acc_6: 0.1500 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.1500 - dense_1_acc_9: 0.1333 - dense_1_acc_10: 0.1333 - dense_1_acc_11: 0.0667 - dense_1_acc_12: 0.1833 - dense_1_acc_13: 0.1167 - dense_1_acc_14: 0.1667 - dense_1_acc_15: 0.1167 - dense_1_acc_16: 0.0500 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.1333 - dense_1_acc_19: 0.0000e+00 - dense_1_acc_20: 0.0667 - dense_1_acc_21: 0.1333 - dense_1_acc_22: 0.1000 - dense_1_acc_23: 0.0667 - dense_1_acc_24: 0.0667 - dense_1_acc_25: 0.0667 - dense_1_acc_26: 0.1000 - dense_1_acc_27: 0.0833 - dense_1_acc_28: 0.0333 - dense_1_acc_29: 0.0000e+00
Epoch 4/100
60/60 [==============================] - 0s 6ms/step - loss: 111.6702 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.2167 - dense_1_acc_2: 0.1833 - dense_1_acc_3: 0.1500 - dense_1_acc_4: 0.2167 - dense_1_acc_5: 0.1500 - dense_1_acc_6: 0.0833 - dense_1_acc_7: 0.1333 - dense_1_acc_8: 0.1500 - dense_1_acc_9: 0.1500 - dense_1_acc_10: 0.1167 - dense_1_acc_11: 0.0667 - dense_1_acc_12: 0.1167 - dense_1_acc_13: 0.1500 - dense_1_acc_14: 0.1167 - dense_1_acc_15: 0.1167 - dense_1_acc_16: 0.1500 - dense_1_acc_17: 0.0500 - dense_1_acc_18: 0.1500 - dense_1_acc_19: 0.1167 - dense_1_acc_20: 0.0833 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.0667 - dense_1_acc_23: 0.0667 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.0333 - dense_1_acc_27: 0.1167 - dense_1_acc_28: 0.1167 - dense_1_acc_29: 0.0000e+00
Epoch 5/100
60/60 [==============================] - 0s 4ms/step - loss: 107.8037 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.2333 - dense_1_acc_2: 0.2167 - dense_1_acc_3: 0.1667 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1500 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1500 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.1667 - dense_1_acc_10: 0.1000 - dense_1_acc_11: 0.0500 - dense_1_acc_12: 0.1667 - dense_1_acc_13: 0.2000 - dense_1_acc_14: 0.1500 - dense_1_acc_15: 0.1333 - dense_1_acc_16: 0.2000 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.1500 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.1167 - dense_1_acc_21: 0.0667 - dense_1_acc_22: 0.1333 - dense_1_acc_23: 0.1333 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.2000 - dense_1_acc_26: 0.1000 - dense_1_acc_27: 0.1167 - dense_1_acc_28: 0.1333 - dense_1_acc_29: 0.0000e+00
Epoch 6/100
60/60 [==============================] - 0s 4ms/step - loss: 106.5154 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.2333 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.2500 - dense_1_acc_5: 0.1333 - dense_1_acc_6: 0.1167 - dense_1_acc_7: 0.1833 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.2167 - dense_1_acc_10: 0.0833 - dense_1_acc_11: 0.0500 - dense_1_acc_12: 0.1167 - dense_1_acc_13: 0.1667 - dense_1_acc_14: 0.1667 - dense_1_acc_15: 0.1333 - dense_1_acc_16: 0.1667 - dense_1_acc_17: 0.1000 - dense_1_acc_18: 0.2000 - dense_1_acc_19: 0.0833 - dense_1_acc_20: 0.1000 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.1000 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.0333 - dense_1_acc_25: 0.1667 - dense_1_acc_26: 0.0667 - dense_1_acc_27: 0.1333 - dense_1_acc_28: 0.1333 - dense_1_acc_29: 0.0000e+00
Epoch 7/100
60/60 [==============================] - 0s 4ms/step - loss: 102.1635 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.3000 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.2000 - dense_1_acc_4: 0.3167 - dense_1_acc_5: 0.1500 - dense_1_acc_6: 0.1500 - dense_1_acc_7: 0.2667 - dense_1_acc_8: 0.1833 - dense_1_acc_9: 0.2000 - dense_1_acc_10: 0.1667 - dense_1_acc_11: 0.1500 - dense_1_acc_12: 0.1833 - dense_1_acc_13: 0.2333 - dense_1_acc_14: 0.1833 - dense_1_acc_15: 0.1500 - dense_1_acc_16: 0.1667 - dense_1_acc_17: 0.1500 - dense_1_acc_18: 0.1833 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.1000 - dense_1_acc_21: 0.1500 - dense_1_acc_22: 0.1167 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.1000 - dense_1_acc_25: 0.2333 - dense_1_acc_26: 0.0500 - dense_1_acc_27: 0.1500 - dense_1_acc_28: 0.1667 - dense_1_acc_29: 0.0000e+00
Epoch 8/100
60/60 [==============================] - 1s 9ms/step - loss: 98.6794 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.2000 - dense_1_acc_4: 0.3000 - dense_1_acc_5: 0.1667 - dense_1_acc_6: 0.2167 - dense_1_acc_7: 0.2333 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.2000 - dense_1_acc_10: 0.1500 - dense_1_acc_11: 0.0833 - dense_1_acc_12: 0.1667 - dense_1_acc_13: 0.2167 - dense_1_acc_14: 0.0833 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.2167 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.1333 - dense_1_acc_19: 0.1500 - dense_1_acc_20: 0.0833 - dense_1_acc_21: 0.1000 - dense_1_acc_22: 0.0667 - dense_1_acc_23: 0.0833 - dense_1_acc_24: 0.1167 - dense_1_acc_25: 0.1167 - dense_1_acc_26: 0.0667 - dense_1_acc_27: 0.0833 - dense_1_acc_28: 0.1500 - dense_1_acc_29: 0.0000e+00
Epoch 9/100
60/60 [==============================] - 0s 4ms/step - loss: 94.8448 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1833 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.2500 - dense_1_acc_5: 0.1333 - dense_1_acc_6: 0.2333 - dense_1_acc_7: 0.2500 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.2500 - dense_1_acc_10: 0.1167 - dense_1_acc_11: 0.1167 - dense_1_acc_12: 0.1667 - dense_1_acc_13: 0.2167 - dense_1_acc_14: 0.1000 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.2500 - dense_1_acc_17: 0.0833 - dense_1_acc_18: 0.1833 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.1333 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.1167 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.1500 - dense_1_acc_25: 0.2500 - dense_1_acc_26: 0.0500 - dense_1_acc_27: 0.1667 - dense_1_acc_28: 0.1500 - dense_1_acc_29: 0.0000e+00
Epoch 10/100
60/60 [==============================] - 0s 5ms/step - loss: 91.3548 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1833 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.3000 - dense_1_acc_5: 0.1500 - dense_1_acc_6: 0.2000 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.2833 - dense_1_acc_10: 0.1667 - dense_1_acc_11: 0.1333 - dense_1_acc_12: 0.1833 - dense_1_acc_13: 0.2833 - dense_1_acc_14: 0.1833 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.3667 - dense_1_acc_17: 0.1333 - dense_1_acc_18: 0.2333 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.1833 - dense_1_acc_21: 0.2000 - dense_1_acc_22: 0.2167 - dense_1_acc_23: 0.1833 - dense_1_acc_24: 0.1167 - dense_1_acc_25: 0.3000 - dense_1_acc_26: 0.1333 - dense_1_acc_27: 0.2333 - dense_1_acc_28: 0.2167 - dense_1_acc_29: 0.0000e+00
Epoch 11/100
60/60 [==============================] - 0s 4ms/step - loss: 87.4052 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1833 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.2000 - dense_1_acc_4: 0.3000 - dense_1_acc_5: 0.1500 - dense_1_acc_6: 0.2000 - dense_1_acc_7: 0.1833 - dense_1_acc_8: 0.1500 - dense_1_acc_9: 0.3000 - dense_1_acc_10: 0.1667 - dense_1_acc_11: 0.1167 - dense_1_acc_12: 0.2167 - dense_1_acc_13: 0.3000 - dense_1_acc_14: 0.2000 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.3500 - dense_1_acc_17: 0.1667 - dense_1_acc_18: 0.1667 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.2167 - dense_1_acc_21: 0.1667 - dense_1_acc_22: 0.2167 - dense_1_acc_23: 0.2500 - dense_1_acc_24: 0.1333 - dense_1_acc_25: 0.3500 - dense_1_acc_26: 0.2000 - dense_1_acc_27: 0.2667 - dense_1_acc_28: 0.2000 - dense_1_acc_29: 0.0000e+00
Epoch 12/100
60/60 [==============================] - 0s 5ms/step - loss: 84.0063 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.2000 - dense_1_acc_4: 0.2833 - dense_1_acc_5: 0.2000 - dense_1_acc_6: 0.2000 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.1833 - dense_1_acc_9: 0.2833 - dense_1_acc_10: 0.1833 - dense_1_acc_11: 0.1667 - dense_1_acc_12: 0.2833 - dense_1_acc_13: 0.3167 - dense_1_acc_14: 0.2833 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.3167 - dense_1_acc_17: 0.2167 - dense_1_acc_18: 0.2333 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.2500 - dense_1_acc_21: 0.2333 - dense_1_acc_22: 0.2167 - dense_1_acc_23: 0.3000 - dense_1_acc_24: 0.1167 - dense_1_acc_25: 0.2667 - dense_1_acc_26: 0.3000 - dense_1_acc_27: 0.3167 - dense_1_acc_28: 0.2000 - dense_1_acc_29: 0.0000e+00
Epoch 13/100
60/60 [==============================] - 0s 4ms/step - loss: 80.8469 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.2333 - dense_1_acc_4: 0.3000 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.2167 - dense_1_acc_7: 0.1833 - dense_1_acc_8: 0.2000 - dense_1_acc_9: 0.2667 - dense_1_acc_10: 0.1833 - dense_1_acc_11: 0.1833 - dense_1_acc_12: 0.2667 - dense_1_acc_13: 0.3167 - dense_1_acc_14: 0.2500 - dense_1_acc_15: 0.2167 - dense_1_acc_16: 0.3333 - dense_1_acc_17: 0.2500 - dense_1_acc_18: 0.2167 - dense_1_acc_19: 0.2500 - dense_1_acc_20: 0.2833 - dense_1_acc_21: 0.2000 - dense_1_acc_22: 0.2667 - dense_1_acc_23: 0.3167 - dense_1_acc_24: 0.1833 - dense_1_acc_25: 0.3500 - dense_1_acc_26: 0.3333 - dense_1_acc_27: 0.3167 - dense_1_acc_28: 0.2167 - dense_1_acc_29: 0.0000e+00
Epoch 14/100
60/60 [==============================] - 0s 5ms/step - loss: 77.4239 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2000 - dense_1_acc_2: 0.2833 - dense_1_acc_3: 0.2500 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.2000 - dense_1_acc_6: 0.1833 - dense_1_acc_7: 0.2500 - dense_1_acc_8: 0.2500 - dense_1_acc_9: 0.3333 - dense_1_acc_10: 0.2833 - dense_1_acc_11: 0.2667 - dense_1_acc_12: 0.3833 - dense_1_acc_13: 0.4000 - dense_1_acc_14: 0.3167 - dense_1_acc_15: 0.2833 - dense_1_acc_16: 0.2667 - dense_1_acc_17: 0.2333 - dense_1_acc_18: 0.3000 - dense_1_acc_19: 0.2833 - dense_1_acc_20: 0.2500 - dense_1_acc_21: 0.3000 - dense_1_acc_22: 0.2667 - dense_1_acc_23: 0.2833 - dense_1_acc_24: 0.2000 - dense_1_acc_25: 0.4167 - dense_1_acc_26: 0.3000 - dense_1_acc_27: 0.3333 - dense_1_acc_28: 0.2667 - dense_1_acc_29: 0.0000e+00
Epoch 15/100
60/60 [==============================] - 0s 4ms/step - loss: 74.4298 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3167 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3667 - dense_1_acc_5: 0.2667 - dense_1_acc_6: 0.3167 - dense_1_acc_7: 0.3333 - dense_1_acc_8: 0.3833 - dense_1_acc_9: 0.3333 - dense_1_acc_10: 0.3000 - dense_1_acc_11: 0.3167 - dense_1_acc_12: 0.3667 - dense_1_acc_13: 0.3333 - dense_1_acc_14: 0.3333 - dense_1_acc_15: 0.2833 - dense_1_acc_16: 0.4167 - dense_1_acc_17: 0.3167 - dense_1_acc_18: 0.3000 - dense_1_acc_19: 0.2833 - dense_1_acc_20: 0.2833 - dense_1_acc_21: 0.2333 - dense_1_acc_22: 0.3000 - dense_1_acc_23: 0.3500 - dense_1_acc_24: 0.2167 - dense_1_acc_25: 0.3667 - dense_1_acc_26: 0.3500 - dense_1_acc_27: 0.3167 - dense_1_acc_28: 0.3333 - dense_1_acc_29: 0.0000e+00
Epoch 16/100
60/60 [==============================] - 0s 4ms/step - loss: 71.2746 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.2833 - dense_1_acc_4: 0.4000 - dense_1_acc_5: 0.3167 - dense_1_acc_6: 0.4000 - dense_1_acc_7: 0.3833 - dense_1_acc_8: 0.3000 - dense_1_acc_9: 0.2833 - dense_1_acc_10: 0.2833 - dense_1_acc_11: 0.3667 - dense_1_acc_12: 0.3667 - dense_1_acc_13: 0.3500 - dense_1_acc_14: 0.3500 - dense_1_acc_15: 0.3500 - dense_1_acc_16: 0.4167 - dense_1_acc_17: 0.3167 - dense_1_acc_18: 0.3500 - dense_1_acc_19: 0.3500 - dense_1_acc_20: 0.3667 - dense_1_acc_21: 0.3833 - dense_1_acc_22: 0.3500 - dense_1_acc_23: 0.3667 - dense_1_acc_24: 0.2167 - dense_1_acc_25: 0.4000 - dense_1_acc_26: 0.4000 - dense_1_acc_27: 0.3167 - dense_1_acc_28: 0.3667 - dense_1_acc_29: 0.0000e+00
Epoch 17/100
60/60 [==============================] - 0s 4ms/step - loss: 68.5620 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.4333 - dense_1_acc_5: 0.3167 - dense_1_acc_6: 0.3667 - dense_1_acc_7: 0.4000 - dense_1_acc_8: 0.3500 - dense_1_acc_9: 0.3500 - dense_1_acc_10: 0.3167 - dense_1_acc_11: 0.3333 - dense_1_acc_12: 0.4000 - dense_1_acc_13: 0.4667 - dense_1_acc_14: 0.3167 - dense_1_acc_15: 0.3833 - dense_1_acc_16: 0.4167 - dense_1_acc_17: 0.4000 - dense_1_acc_18: 0.3833 - dense_1_acc_19: 0.3833 - dense_1_acc_20: 0.3333 - dense_1_acc_21: 0.4833 - dense_1_acc_22: 0.4000 - dense_1_acc_23: 0.3500 - dense_1_acc_24: 0.3000 - dense_1_acc_25: 0.4833 - dense_1_acc_26: 0.3833 - dense_1_acc_27: 0.4167 - dense_1_acc_28: 0.3500 - dense_1_acc_29: 0.0000e+00
Epoch 18/100
60/60 [==============================] - 0s 4ms/step - loss: 65.4350 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2000 - dense_1_acc_2: 0.3500 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3667 - dense_1_acc_5: 0.2833 - dense_1_acc_6: 0.3833 - dense_1_acc_7: 0.5000 - dense_1_acc_8: 0.3500 - dense_1_acc_9: 0.3667 - dense_1_acc_10: 0.3333 - dense_1_acc_11: 0.4167 - dense_1_acc_12: 0.4500 - dense_1_acc_13: 0.4833 - dense_1_acc_14: 0.3667 - dense_1_acc_15: 0.3667 - dense_1_acc_16: 0.3833 - dense_1_acc_17: 0.3667 - dense_1_acc_18: 0.4000 - dense_1_acc_19: 0.4833 - dense_1_acc_20: 0.4000 - dense_1_acc_21: 0.4500 - dense_1_acc_22: 0.4167 - dense_1_acc_23: 0.4333 - dense_1_acc_24: 0.3333 - dense_1_acc_25: 0.5167 - dense_1_acc_26: 0.4667 - dense_1_acc_27: 0.5333 - dense_1_acc_28: 0.4000 - dense_1_acc_29: 0.0000e+00
Epoch 19/100
60/60 [==============================] - 0s 7ms/step - loss: 62.7135 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3833 - dense_1_acc_5: 0.3500 - dense_1_acc_6: 0.4167 - dense_1_acc_7: 0.5000 - dense_1_acc_8: 0.4500 - dense_1_acc_9: 0.4500 - dense_1_acc_10: 0.3667 - dense_1_acc_11: 0.4167 - dense_1_acc_12: 0.4667 - dense_1_acc_13: 0.5000 - dense_1_acc_14: 0.4167 - dense_1_acc_15: 0.4333 - dense_1_acc_16: 0.5167 - dense_1_acc_17: 0.4333 - dense_1_acc_18: 0.5000 - dense_1_acc_19: 0.4833 - dense_1_acc_20: 0.4833 - dense_1_acc_21: 0.4833 - dense_1_acc_22: 0.4667 - dense_1_acc_23: 0.5167 - dense_1_acc_24: 0.3833 - dense_1_acc_25: 0.5333 - dense_1_acc_26: 0.4500 - dense_1_acc_27: 0.5333 - dense_1_acc_28: 0.4833 - dense_1_acc_29: 0.0000e+00
Epoch 20/100
60/60 [==============================] - 0s 4ms/step - loss: 59.7611 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2500 - dense_1_acc_2: 0.4167 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.4500 - dense_1_acc_5: 0.3833 - dense_1_acc_6: 0.4167 - dense_1_acc_7: 0.5833 - dense_1_acc_8: 0.5167 - dense_1_acc_9: 0.4333 - dense_1_acc_10: 0.5500 - dense_1_acc_11: 0.5833 - dense_1_acc_12: 0.5833 - dense_1_acc_13: 0.6000 - dense_1_acc_14: 0.5333 - dense_1_acc_15: 0.5167 - dense_1_acc_16: 0.5667 - dense_1_acc_17: 0.4833 - dense_1_acc_18: 0.6000 - dense_1_acc_19: 0.6167 - dense_1_acc_20: 0.6000 - dense_1_acc_21: 0.5500 - dense_1_acc_22: 0.4833 - dense_1_acc_23: 0.4833 - dense_1_acc_24: 0.4667 - dense_1_acc_25: 0.6000 - dense_1_acc_26: 0.4833 - dense_1_acc_27: 0.6333 - dense_1_acc_28: 0.5667 - dense_1_acc_29: 0.0000e+00
Epoch 21/100
60/60 [==============================] - 0s 4ms/step - loss: 56.8336 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2500 - dense_1_acc_2: 0.4167 - dense_1_acc_3: 0.3333 - dense_1_acc_4: 0.4667 - dense_1_acc_5: 0.4333 - dense_1_acc_6: 0.4833 - dense_1_acc_7: 0.6333 - dense_1_acc_8: 0.5500 - dense_1_acc_9: 0.4667 - dense_1_acc_10: 0.6000 - dense_1_acc_11: 0.6500 - dense_1_acc_12: 0.6500 - dense_1_acc_13: 0.6667 - dense_1_acc_14: 0.5333 - dense_1_acc_15: 0.5667 - dense_1_acc_16: 0.6000 - dense_1_acc_17: 0.5500 - dense_1_acc_18: 0.6833 - dense_1_acc_19: 0.7000 - dense_1_acc_20: 0.6333 - dense_1_acc_21: 0.5667 - dense_1_acc_22: 0.5667 - dense_1_acc_23: 0.5833 - dense_1_acc_24: 0.5667 - dense_1_acc_25: 0.6500 - dense_1_acc_26: 0.5667 - dense_1_acc_27: 0.6500 - dense_1_acc_28: 0.6333 - dense_1_acc_29: 0.0000e+00
Epoch 22/100
60/60 [==============================] - 0s 4ms/step - loss: 54.0474 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2500 - dense_1_acc_2: 0.4333 - dense_1_acc_3: 0.3333 - dense_1_acc_4: 0.4500 - dense_1_acc_5: 0.4500 - dense_1_acc_6: 0.4833 - dense_1_acc_7: 0.6000 - dense_1_acc_8: 0.5667 - dense_1_acc_9: 0.5500 - dense_1_acc_10: 0.5667 - dense_1_acc_11: 0.6833 - dense_1_acc_12: 0.7167 - dense_1_acc_13: 0.7167 - dense_1_acc_14: 0.5667 - dense_1_acc_15: 0.6000 - dense_1_acc_16: 0.6167 - dense_1_acc_17: 0.5667 - dense_1_acc_18: 0.7167 - dense_1_acc_19: 0.7333 - dense_1_acc_20: 0.6667 - dense_1_acc_21: 0.6500 - dense_1_acc_22: 0.5333 - dense_1_acc_23: 0.6000 - dense_1_acc_24: 0.6000 - dense_1_acc_25: 0.6167 - dense_1_acc_26: 0.5500 - dense_1_acc_27: 0.6667 - dense_1_acc_28: 0.6667 - dense_1_acc_29: 0.0000e+00
Epoch 23/100
60/60 [==============================] - 0s 3ms/step - loss: 51.2100 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2500 - dense_1_acc_2: 0.4500 - dense_1_acc_3: 0.3333 - dense_1_acc_4: 0.4500 - dense_1_acc_5: 0.4667 - dense_1_acc_6: 0.5000 - dense_1_acc_7: 0.6333 - dense_1_acc_8: 0.6167 - dense_1_acc_9: 0.5833 - dense_1_acc_10: 0.5833 - dense_1_acc_11: 0.7333 - dense_1_acc_12: 0.7833 - dense_1_acc_13: 0.7000 - dense_1_acc_14: 0.6667 - dense_1_acc_15: 0.6333 - dense_1_acc_16: 0.6167 - dense_1_acc_17: 0.6167 - dense_1_acc_18: 0.7000 - dense_1_acc_19: 0.7333 - dense_1_acc_20: 0.7000 - dense_1_acc_21: 0.6667 - dense_1_acc_22: 0.5833 - dense_1_acc_23: 0.6333 - dense_1_acc_24: 0.6167 - dense_1_acc_25: 0.7500 - dense_1_acc_26: 0.6000 - dense_1_acc_27: 0.6500 - dense_1_acc_28: 0.6667 - dense_1_acc_29: 0.0000e+00
Epoch 24/100
60/60 [==============================] - 0s 4ms/step - loss: 48.6045 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.4500 - dense_1_acc_3: 0.3833 - dense_1_acc_4: 0.4500 - dense_1_acc_5: 0.4667 - dense_1_acc_6: 0.6667 - dense_1_acc_7: 0.6167 - dense_1_acc_8: 0.6500 - dense_1_acc_9: 0.6333 - dense_1_acc_10: 0.7000 - dense_1_acc_11: 0.7500 - dense_1_acc_12: 0.8000 - dense_1_acc_13: 0.7667 - dense_1_acc_14: 0.7000 - dense_1_acc_15: 0.6667 - dense_1_acc_16: 0.6500 - dense_1_acc_17: 0.7167 - dense_1_acc_18: 0.8167 - dense_1_acc_19: 0.8000 - dense_1_acc_20: 0.7167 - dense_1_acc_21: 0.7167 - dense_1_acc_22: 0.6500 - dense_1_acc_23: 0.6833 - dense_1_acc_24: 0.6667 - dense_1_acc_25: 0.7167 - dense_1_acc_26: 0.6167 - dense_1_acc_27: 0.6500 - dense_1_acc_28: 0.6667 - dense_1_acc_29: 0.0000e+00
Epoch 25/100
60/60 [==============================] - 1s 9ms/step - loss: 46.0413 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.4500 - dense_1_acc_3: 0.3833 - dense_1_acc_4: 0.4500 - dense_1_acc_5: 0.4833 - dense_1_acc_6: 0.6833 - dense_1_acc_7: 0.6167 - dense_1_acc_8: 0.6167 - dense_1_acc_9: 0.6667 - dense_1_acc_10: 0.6833 - dense_1_acc_11: 0.7667 - dense_1_acc_12: 0.8333 - dense_1_acc_13: 0.8000 - dense_1_acc_14: 0.7500 - dense_1_acc_15: 0.7000 - dense_1_acc_16: 0.6833 - dense_1_acc_17: 0.7167 - dense_1_acc_18: 0.7833 - dense_1_acc_19: 0.8000 - dense_1_acc_20: 0.7333 - dense_1_acc_21: 0.8333 - dense_1_acc_22: 0.7167 - dense_1_acc_23: 0.8167 - dense_1_acc_24: 0.6833 - dense_1_acc_25: 0.7167 - dense_1_acc_26: 0.7000 - dense_1_acc_27: 0.7833 - dense_1_acc_28: 0.8167 - dense_1_acc_29: 0.0000e+00
Epoch 26/100
60/60 [==============================] - 0s 4ms/step - loss: 43.5274 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.4500 - dense_1_acc_3: 0.4000 - dense_1_acc_4: 0.5000 - dense_1_acc_5: 0.5500 - dense_1_acc_6: 0.7167 - dense_1_acc_7: 0.6833 - dense_1_acc_8: 0.7000 - dense_1_acc_9: 0.6500 - dense_1_acc_10: 0.7000 - dense_1_acc_11: 0.7500 - dense_1_acc_12: 0.8167 - dense_1_acc_13: 0.8000 - dense_1_acc_14: 0.7833 - dense_1_acc_15: 0.7667 - dense_1_acc_16: 0.7167 - dense_1_acc_17: 0.7833 - dense_1_acc_18: 0.8000 - dense_1_acc_19: 0.8667 - dense_1_acc_20: 0.8333 - dense_1_acc_21: 0.8667 - dense_1_acc_22: 0.8167 - dense_1_acc_23: 0.8667 - dense_1_acc_24: 0.7667 - dense_1_acc_25: 0.8000 - dense_1_acc_26: 0.7167 - dense_1_acc_27: 0.8333 - dense_1_acc_28: 0.8500 - dense_1_acc_29: 0.0000e+00
Epoch 27/100
60/60 [==============================] - 0s 4ms/step - loss: 41.1485 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.4667 - dense_1_acc_3: 0.4500 - dense_1_acc_4: 0.5167 - dense_1_acc_5: 0.6000 - dense_1_acc_6: 0.7500 - dense_1_acc_7: 0.7500 - dense_1_acc_8: 0.7000 - dense_1_acc_9: 0.7500 - dense_1_acc_10: 0.7833 - dense_1_acc_11: 0.7500 - dense_1_acc_12: 0.8500 - dense_1_acc_13: 0.7833 - dense_1_acc_14: 0.7167 - dense_1_acc_15: 0.7500 - dense_1_acc_16: 0.7500 - dense_1_acc_17: 0.8333 - dense_1_acc_18: 0.8000 - dense_1_acc_19: 0.8667 - dense_1_acc_20: 0.8167 - dense_1_acc_21: 0.8833 - dense_1_acc_22: 0.8333 - dense_1_acc_23: 0.8833 - dense_1_acc_24: 0.7500 - dense_1_acc_25: 0.8333 - dense_1_acc_26: 0.7000 - dense_1_acc_27: 0.8333 - dense_1_acc_28: 0.8333 - dense_1_acc_29: 0.0000e+00
Epoch 28/100
60/60 [==============================] - 0s 4ms/step - loss: 38.8850 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.5000 - dense_1_acc_3: 0.4833 - dense_1_acc_4: 0.5167 - dense_1_acc_5: 0.6833 - dense_1_acc_6: 0.7500 - dense_1_acc_7: 0.7833 - dense_1_acc_8: 0.8000 - dense_1_acc_9: 0.8500 - dense_1_acc_10: 0.7833 - dense_1_acc_11: 0.7833 - dense_1_acc_12: 0.8833 - dense_1_acc_13: 0.8667 - dense_1_acc_14: 0.7667 - dense_1_acc_15: 0.8167 - dense_1_acc_16: 0.8167 - dense_1_acc_17: 0.8167 - dense_1_acc_18: 0.8667 - dense_1_acc_19: 0.9167 - dense_1_acc_20: 0.9167 - dense_1_acc_21: 0.8833 - dense_1_acc_22: 0.8500 - dense_1_acc_23: 0.9000 - dense_1_acc_24: 0.7667 - dense_1_acc_25: 0.8500 - dense_1_acc_26: 0.7333 - dense_1_acc_27: 0.8833 - dense_1_acc_28: 0.8667 - dense_1_acc_29: 0.0000e+00
Epoch 29/100
60/60 [==============================] - 0s 4ms/step - loss: 36.6762 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.2833 - dense_1_acc_2: 0.5167 - dense_1_acc_3: 0.5000 - dense_1_acc_4: 0.5667 - dense_1_acc_5: 0.7167 - dense_1_acc_6: 0.8000 - dense_1_acc_7: 0.7833 - dense_1_acc_8: 0.8000 - dense_1_acc_9: 0.9167 - dense_1_acc_10: 0.7833 - dense_1_acc_11: 0.8000 - dense_1_acc_12: 0.9333 - dense_1_acc_13: 0.9333 - dense_1_acc_14: 0.8333 - dense_1_acc_15: 0.8333 - dense_1_acc_16: 0.9000 - dense_1_acc_17: 0.8333 - dense_1_acc_18: 0.8833 - dense_1_acc_19: 0.9000 - dense_1_acc_20: 0.9333 - dense_1_acc_21: 0.9000 - dense_1_acc_22: 0.8333 - dense_1_acc_23: 0.8667 - dense_1_acc_24: 0.8500 - dense_1_acc_25: 0.8667 - dense_1_acc_26: 0.8167 - dense_1_acc_27: 0.8833 - dense_1_acc_28: 0.8500 - dense_1_acc_29: 0.0000e+00
Epoch 30/100
60/60 [==============================] - 0s 7ms/step - loss: 34.6810 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3000 - dense_1_acc_2: 0.5167 - dense_1_acc_3: 0.5333 - dense_1_acc_4: 0.6000 - dense_1_acc_5: 0.7667 - dense_1_acc_6: 0.8167 - dense_1_acc_7: 0.8667 - dense_1_acc_8: 0.8500 - dense_1_acc_9: 0.9333 - dense_1_acc_10: 0.8500 - dense_1_acc_11: 0.8500 - dense_1_acc_12: 0.9333 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 0.8667 - dense_1_acc_15: 0.9333 - dense_1_acc_16: 0.9500 - dense_1_acc_17: 0.9167 - dense_1_acc_18: 0.9000 - dense_1_acc_19: 0.9167 - dense_1_acc_20: 0.9667 - dense_1_acc_21: 0.9500 - dense_1_acc_22: 0.8500 - dense_1_acc_23: 0.9167 - dense_1_acc_24: 0.8833 - dense_1_acc_25: 0.8667 - dense_1_acc_26: 0.8333 - dense_1_acc_27: 0.9167 - dense_1_acc_28: 0.9000 - dense_1_acc_29: 0.0000e+00
Epoch 31/100
60/60 [==============================] - 0s 4ms/step - loss: 32.8200 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3000 - dense_1_acc_2: 0.5667 - dense_1_acc_3: 0.6000 - dense_1_acc_4: 0.6167 - dense_1_acc_5: 0.8000 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.8833 - dense_1_acc_8: 0.8833 - dense_1_acc_9: 0.9500 - dense_1_acc_10: 0.8833 - dense_1_acc_11: 0.8667 - dense_1_acc_12: 0.9500 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 0.8833 - dense_1_acc_15: 0.9333 - dense_1_acc_16: 0.9333 - dense_1_acc_17: 0.9667 - dense_1_acc_18: 0.9167 - dense_1_acc_19: 0.9500 - dense_1_acc_20: 0.9667 - dense_1_acc_21: 0.9667 - dense_1_acc_22: 0.8667 - dense_1_acc_23: 0.9500 - dense_1_acc_24: 0.9000 - dense_1_acc_25: 0.9500 - dense_1_acc_26: 0.9333 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9167 - dense_1_acc_29: 0.0000e+00
Epoch 32/100
60/60 [==============================] - 0s 4ms/step - loss: 30.8147 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3000 - dense_1_acc_2: 0.5667 - dense_1_acc_3: 0.6000 - dense_1_acc_4: 0.6667 - dense_1_acc_5: 0.8167 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.9167 - dense_1_acc_8: 0.9000 - dense_1_acc_9: 0.9500 - dense_1_acc_10: 0.9333 - dense_1_acc_11: 0.9000 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 0.8833 - dense_1_acc_15: 0.9500 - dense_1_acc_16: 0.9500 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9667 - dense_1_acc_19: 0.9500 - dense_1_acc_20: 0.9500 - dense_1_acc_21: 0.9500 - dense_1_acc_22: 0.8667 - dense_1_acc_23: 0.9500 - dense_1_acc_24: 0.8833 - dense_1_acc_25: 0.9667 - dense_1_acc_26: 0.9333 - dense_1_acc_27: 0.9333 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 33/100
60/60 [==============================] - 0s 3ms/step - loss: 29.1697 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3167 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.6167 - dense_1_acc_4: 0.6667 - dense_1_acc_5: 0.8667 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.9167 - dense_1_acc_8: 0.9000 - dense_1_acc_9: 0.9500 - dense_1_acc_10: 0.9333 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 0.9167 - dense_1_acc_15: 0.9333 - dense_1_acc_16: 0.9667 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9667 - dense_1_acc_19: 0.9667 - dense_1_acc_20: 0.9667 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.8833 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.8833 - dense_1_acc_25: 0.9667 - dense_1_acc_26: 0.9333 - dense_1_acc_27: 0.9333 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 34/100
60/60 [==============================] - 0s 4ms/step - loss: 27.5278 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3167 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.6333 - dense_1_acc_4: 0.7167 - dense_1_acc_5: 0.9000 - dense_1_acc_6: 0.9333 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9333 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 0.9500 - dense_1_acc_11: 0.9667 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9500 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 0.9833 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9667 - dense_1_acc_19: 0.9667 - dense_1_acc_20: 0.9667 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9167 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9000 - dense_1_acc_25: 0.9667 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 35/100
60/60 [==============================] - 0s 4ms/step - loss: 25.9467 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.6833 - dense_1_acc_4: 0.7667 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9500 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 0.9833 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 0.9833 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9333 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 36/100
60/60 [==============================] - 0s 4ms/step - loss: 24.4190 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.7000 - dense_1_acc_4: 0.7833 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9667 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 0.9833 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9500 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9500 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 37/100
60/60 [==============================] - 0s 4ms/step - loss: 23.1523 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.6500 - dense_1_acc_3: 0.7333 - dense_1_acc_4: 0.8000 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9667 - dense_1_acc_8: 0.9500 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9667 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9500 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 38/100
60/60 [==============================] - 0s 4ms/step - loss: 21.8206 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.6500 - dense_1_acc_3: 0.7500 - dense_1_acc_4: 0.8000 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9500 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9667 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9667 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9667 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9500 - dense_1_acc_29: 0.0000e+00
Epoch 39/100
60/60 [==============================] - 1s 8ms/step - loss: 20.6458 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.6667 - dense_1_acc_3: 0.7667 - dense_1_acc_4: 0.8333 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9500 - dense_1_acc_29: 0.0000e+00
Epoch 40/100
60/60 [==============================] - 0s 4ms/step - loss: 19.6420 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3500 - dense_1_acc_2: 0.6833 - dense_1_acc_3: 0.8000 - dense_1_acc_4: 0.8667 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 0.9500 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9500 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 41/100
60/60 [==============================] - 0s 4ms/step - loss: 18.5234 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3667 - dense_1_acc_2: 0.7167 - dense_1_acc_3: 0.8167 - dense_1_acc_4: 0.8667 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 0.9667 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9500 - dense_1_acc_29: 0.0000e+00
Epoch 42/100
60/60 [==============================] - 0s 4ms/step - loss: 17.6296 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3667 - dense_1_acc_2: 0.7167 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00
Epoch 43/100
60/60 [==============================] - 1s 8ms/step - loss: 16.7687 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3833 - dense_1_acc_2: 0.7167 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9000 - dense_1_acc_5: 0.9333 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00
Epoch 44/100
60/60 [==============================] - 0s 5ms/step - loss: 15.9826 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3833 - dense_1_acc_2: 0.7167 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9000 - dense_1_acc_5: 0.9333 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 0.9833 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00
Epoch 45/100
60/60 [==============================] - 0s 4ms/step - loss: 15.2087 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.3833 - dense_1_acc_2: 0.7333 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9167 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00
Epoch 46/100
60/60 [==============================] - 0s 4ms/step - loss: 14.5647 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4333 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00
Epoch 47/100
60/60 [==============================] - 0s 4ms/step - loss: 13.9479 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4333 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00
Epoch 48/100
60/60 [==============================] - 0s 8ms/step - loss: 13.3832 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4333 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 49/100
60/60 [==============================] - 0s 4ms/step - loss: 12.8808 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4333 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 50/100
60/60 [==============================] - 0s 4ms/step - loss: 12.4117 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4333 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 51/100
60/60 [==============================] - 1s 9ms/step - loss: 11.9823 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 52/100
60/60 [==============================] - 0s 4ms/step - loss: 11.5824 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 53/100
60/60 [==============================] - 0s 4ms/step - loss: 11.2310 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 54/100
60/60 [==============================] - 0s 3ms/step - loss: 10.9004 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00
Epoch 55/100
60/60 [==============================] - 0s 4ms/step - loss: 10.5972 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 56/100
60/60 [==============================] - 0s 5ms/step - loss: 10.3063 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 57/100
60/60 [==============================] - 1s 9ms/step - loss: 10.0500 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.4833 - dense_1_acc_2: 0.8000 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 58/100
60/60 [==============================] - 0s 6ms/step - loss: 9.8091 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.8167 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 59/100
60/60 [==============================] - 0s 5ms/step - loss: 9.5818 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.8500 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 60/100
60/60 [==============================] - 0s 8ms/step - loss: 9.3713 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 61/100
60/60 [==============================] - 0s 6ms/step - loss: 9.1792 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 62/100
60/60 [==============================] - 0s 5ms/step - loss: 9.0020 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 63/100
60/60 [==============================] - 0s 4ms/step - loss: 8.8310 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 64/100
60/60 [==============================] - 0s 7ms/step - loss: 8.6699 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 65/100
60/60 [==============================] - 1s 9ms/step - loss: 8.5239 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 66/100
60/60 [==============================] - 0s 5ms/step - loss: 8.3831 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 67/100
60/60 [==============================] - 0s 5ms/step - loss: 8.2537 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 68/100
60/60 [==============================] - 0s 4ms/step - loss: 8.1313 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 69/100
60/60 [==============================] - 0s 5ms/step - loss: 8.0133 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 70/100
60/60 [==============================] - 1s 9ms/step - loss: 7.9030 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 71/100
60/60 [==============================] - 0s 4ms/step - loss: 7.7991 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 72/100
60/60 [==============================] - 0s 4ms/step - loss: 7.6990 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 73/100
60/60 [==============================] - 0s 4ms/step - loss: 7.6071 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 74/100
60/60 [==============================] - 0s 4ms/step - loss: 7.5158 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 75/100
60/60 [==============================] - 0s 4ms/step - loss: 7.4321 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 76/100
60/60 [==============================] - 1s 9ms/step - loss: 7.3501 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 77/100
60/60 [==============================] - 0s 4ms/step - loss: 7.2753 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.5833 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 78/100
60/60 [==============================] - 0s 5ms/step - loss: 7.2013 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 79/100
60/60 [==============================] - 0s 4ms/step - loss: 7.1284 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 80/100
60/60 [==============================] - 0s 4ms/step - loss: 7.0626 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 81/100
60/60 [==============================] - 0s 4ms/step - loss: 6.9965 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 82/100
60/60 [==============================] - 0s 4ms/step - loss: 6.9358 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 83/100
60/60 [==============================] - 0s 4ms/step - loss: 6.8737 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 84/100
60/60 [==============================] - 0s 4ms/step - loss: 6.8170 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 85/100
60/60 [==============================] - 0s 4ms/step - loss: 6.7615 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 86/100
60/60 [==============================] - 0s 4ms/step - loss: 6.7087 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 87/100
60/60 [==============================] - 0s 4ms/step - loss: 6.6585 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 88/100
60/60 [==============================] - 0s 4ms/step - loss: 6.6075 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 89/100
60/60 [==============================] - 0s 4ms/step - loss: 6.5590 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0500 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 90/100
60/60 [==============================] - 0s 4ms/step - loss: 6.5135 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 91/100
60/60 [==============================] - 0s 4ms/step - loss: 6.4695 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 92/100
60/60 [==============================] - 0s 5ms/step - loss: 6.4245 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 93/100
60/60 [==============================] - 0s 8ms/step - loss: 6.3837 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 94/100
60/60 [==============================] - 0s 4ms/step - loss: 6.3430 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 95/100
60/60 [==============================] - 0s 4ms/step - loss: 6.3033 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 96/100
60/60 [==============================] - 0s 6ms/step - loss: 6.2649 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 97/100
60/60 [==============================] - 0s 8ms/step - loss: 6.2267 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9167 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 98/100
60/60 [==============================] - 0s 4ms/step - loss: 6.1922 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9167 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 99/100
60/60 [==============================] - 0s 4ms/step - loss: 6.1570 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9167 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00
Epoch 100/100
60/60 [==============================] - 0s 4ms/step - loss: 6.1227 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.9167 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00<keras.callbacks.History at 0x1ab4a1ac470>

You should see the model loss going down. Now that you have trained a model, lets go on the the final section to implement an inference algorithm, and generate some music!

3 - Generating music

You now have a trained model which has learned the patterns of the jazz soloist. Lets now use this model to synthesize new music.

3.1 - Predicting & Sampling

At each step of sampling, you will take as input the activation a and cell state c from the previous state of the LSTM, forward propagate by one step, and get a new output activation as well as cell state. The new activation a can then be used to generate the output, using densor as before.

To start off the model, we will initialize x0 as well as the LSTM activation and and cell value a0 and c0 to be zeros.

Exercise: Implement the function below to sample a sequence of musical values. Here are some of the key steps you’ll need to implement inside the for-loop that generates the T y T_y Ty output characters:

Step 2.A: Use LSTM_Cell, which inputs the previous step’s c and a to generate the current step’s c and a.

Step 2.B: Use densor (defined previously) to compute a softmax on a to get the output for the current step.

Step 2.C: Save the output you have just generated by appending it to outputs.

Step 2.D: Sample x to the be “out”'s one-hot version (the prediction) so that you can pass it to the next LSTM’s step. We have already provided this line of code, which uses a Lambda function.

x = Lambda(one_hot)(out) 

[Minor technical note: Rather than sampling a value at random according to the probabilities in out, this line of code actually chooses the single most likely note at each step using an argmax.]

# GRADED FUNCTION: music_inference_modeldef music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 100):"""Uses the trained "LSTM_cell" and "densor" from model() to generate a sequence of values.Arguments:LSTM_cell -- the trained "LSTM_cell" from model(), Keras layer objectdensor -- the trained "densor" from model(), Keras layer objectn_values -- integer, umber of unique valuesn_a -- number of units in the LSTM_cellTy -- integer, number of time steps to generateReturns:inference_model -- Keras model instance"""# Define the input of your model with a shape x0 = Input(shape=(1, n_values))# Define s0, initial hidden state for the decoder LSTMa0 = Input(shape=(n_a,), name='a0')c0 = Input(shape=(n_a,), name='c0')a = a0c = c0x = x0### START CODE HERE #### Step 1: Create an empty list of "outputs" to later store your predicted values (≈1 line)outputs = list()# Step 2: Loop over Ty and generate a value at every time stepfor t in range(Ty):# Step 2.A: Perform one step of LSTM_cell (≈1 line)a, _, c = LSTM_cell(x, initial_state=[a, c])# Step 2.B: Apply Dense layer to the hidden state output of the LSTM_cell (≈1 line)out = densor(a)# Step 2.C: Append the prediction "out" to "outputs". out.shape = (None, 78) (≈1 line)outputs.append(out)# Step 2.D: Select the next value according to "out", and set "x" to be the one-hot representation of the#           selected value, which will be passed as the input to LSTM_cell on the next step. We have provided #           the line of code you need to do this. x = Lambda(one_hot)(out)# Step 3: Create model instance with the correct "inputs" and "outputs" (≈1 line)inference_model = Model(inputs=[x0,a0,c0], outputs=outputs)### END CODE HERE ###return inference_model

Run the cell below to define your inference model. This model is hard coded to generate 50 values.

inference_model = music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 50)

Finally, this creates the zero-valued vectors you will use to initialize x and the LSTM state variables a and c.

x_initializer = np.zeros((1, 1, 78))
a_initializer = np.zeros((1, n_a))
c_initializer = np.zeros((1, n_a))

Exercise: Implement predict_and_sample(). This function takes many arguments including the inputs [x_initializer, a_initializer, c_initializer]. In order to predict the output corresponding to this input, you will need to carry-out 3 steps:

  1. Use your inference model to predict an output given your set of inputs. The output pred should be a list of length 20 where each element is a numpy-array of shape ( T y T_y Ty, n_values)
  2. Convert pred into a numpy array of T y T_y Ty indices. Each index corresponds is computed by taking the argmax of an element of the pred list. Hint.
  3. Convert the indices into their one-hot vector representations. Hint.
# GRADED FUNCTION: predict_and_sampledef predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer, c_initializer = c_initializer):"""Predicts the next value of values using the inference model.Arguments:inference_model -- Keras model instance for inference timex_initializer -- numpy array of shape (1, 1, 78), one-hot vector initializing the values generationa_initializer -- numpy array of shape (1, n_a), initializing the hidden state of the LSTM_cellc_initializer -- numpy array of shape (1, n_a), initializing the cell state of the LSTM_celReturns:results -- numpy-array of shape (Ty, 78), matrix of one-hot vectors representing the values generatedindices -- numpy-array of shape (Ty, 1), matrix of indices representing the values generated"""### START CODE HERE #### Step 1: Use your inference model to predict an output sequence given x_initializer, a_initializer and c_initializer.pred = inference_model.predict([x_initializer, a_initializer, c_initializer]) # Step 2: Convert "pred" into an np.array() of indices with the maximum probabilitiesindices = np.argmax(pred, axis = 2)# Step 3: Convert indices to one-hot vectors, the shape of the results should be (1, )results = to_categorical(indices)### END CODE HERE ###return results, indices
results, indices = predict_and_sample(inference_model, x_initializer, a_initializer, c_initializer)
print("np.argmax(results[12]) =", np.argmax(results[12]))
print("np.argmax(results[17]) =", np.argmax(results[17]))
print("list(indices[12:18]) =", list(indices[12:18]))
np.argmax(results[12]) = 42
np.argmax(results[17]) = 66
list(indices[12:18]) = [array([42], dtype=int64), array([66], dtype=int64), array([58], dtype=int64), array([44], dtype=int64), array([42], dtype=int64), array([66], dtype=int64)]

Expected Output: Your results may differ because Keras’ results are not completely predictable. However, if you have trained your LSTM_cell with model.fit() for exactly 100 epochs as described above, you should very likely observe a sequence of indices that are not all identical. Moreover, you should observe that: np.argmax(results[12]) is the first element of list(indices[12:18]) and np.argmax(results[17]) is the last element of list(indices[12:18]).

np.argmax(results[12]) =

1

np.argmax(results[12]) =

42

list(indices[12:18]) =

[array([1]), array([42]), array([54]), array([17]), array([1]), array([42])]
3.3 - Generate music

Finally, you are ready to generate music. Your RNN generates a sequence of values. The following code generates music by first calling your predict_and_sample() function. These values are then post-processed into musical chords (meaning that multiple values or notes can be played at the same time).

Most computational music algorithms use some post-processing because it is difficult to generate music that sounds good without such post-processing. The post-processing does things such as clean up the generated audio by making sure the same sound is not repeated too many times, that two successive notes are not too far from each other in pitch, and so on. One could argue that a lot of these post-processing steps are hacks; also, a lot the music generation literature has also focused on hand-crafting post-processors, and a lot of the output quality depends on the quality of the post-processing and not just the quality of the RNN. But this post-processing does make a huge difference, so lets use it in our implementation as well.

Lets make some music!

Run the following cell to generate music and record it into your out_stream. This can take a couple of minutes.

out_stream = generate_music(inference_model)
Predicting new values for different set of chords.
Generated 51 sounds using the predicted values for the set of chords ("1") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("2") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("3") and after pruning
Generated 50 sounds using the predicted values for the set of chords ("4") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("5") and after pruning
Your generated music is saved in output/my_music.midi

To listen to your music, click File->Open… Then go to “output/” and download “my_music.midi”. Either play it on your computer with an application that can read midi files if you have one, or use one of the free online “MIDI to mp3” conversion tools to convert this to mp3.

As reference, here also is a 30sec audio clip we generated using this algorithm.

# IPython.display.Audio('./data/30s_trained_model.mp3')

Congratulations!

You have come to the end of the notebook.

Here's what you should remember: - A sequence model can be used to generate musical values, which are then post-processed into midi music. - Fairly similar models can be used to generate dinosaur names or to generate music, with the major difference being the input fed to the model. - In Keras, sequence generation involves defining layers with shared weights, which are then repeated for the different time steps $1, \ldots, T_x$.

Congratulations on completing this assignment and generating a jazz solo!

References

The ideas presented in this notebook came primarily from three computational music papers cited below. The implementation here also took significant inspiration and used many components from Ji-Sung Kim’s github repository.

  • Ji-Sung Kim, 2016, deepjazz
  • Jon Gillick, Kevin Tang and Robert Keller, 2009. Learning Jazz Grammars
  • Robert Keller and David Morrison, 2007, A Grammatical Approach to Automatic Improvisation
  • François Pachet, 1999, Surprising Harmonies

We’re also grateful to François Germain for valuable feedback.

这篇关于吴恩达深度学习5.1练习_Sequence Models_Improvise a Jazz Solo with LSTM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261363

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件