深度学习作业L5W3(2):Improvise a Jazz Solo with an LSTM Network

2023-10-22 12:10

本文主要是介绍深度学习作业L5W3(2):Improvise a Jazz Solo with an LSTM Network,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

构建一个识别触发语言的模型(siri)

数据构建

我们手里有:
背景音
正例音(符合trigger word)
反例音 (不符合trigger word)

我们把正例音和反例音随机插在背景音当中作为训练集数据,同时如下设置标签:在每个正例音结束之后,将一定时间段的y值设为1(增加1的个数提高学习效果)

判断时间段是否冲突

# GRADED FUNCTION: is_overlappingdef is_overlapping(segment_time, previous_segments):"""Checks if the time of a segment overlaps with the times of existing segments.Arguments:segment_time -- a tuple of (segment_start, segment_end) for the new segmentprevious_segments -- a list of tuples of (segment_start, segment_end) for the existing segmentsReturns:True if the time segment overlaps with any of the existing segments, False otherwise"""segment_start, segment_end = segment_time### START CODE HERE ### (≈ 4 line)# Step 1: Initialize overlap as a "False" flag. (≈ 1 line)overlap = False# Step 2: loop over the previous_segments start and end times.# Compare start/end times and set the flag to True if there is an overlap (≈ 3 lines)for previous_start, previous_end in previous_segments:if not(previous_start>segment_end or previous_end<segment_start):overlap = Truebreak### END CODE HERE ###return overlap

设置插入方法来构造训练集数据

# GRADED FUNCTION: insert_audio_clipdef insert_audio_clip(background, audio_clip, previous_segments):"""Insert a new audio segment over the background noise at a random time step, ensuring that the audio segment does not overlap with existing segments.Arguments:background -- a 10 second background audio recording.  audio_clip -- the audio clip to be inserted/overlaid. previous_segments -- times where audio segments have already been placedReturns:new_background -- the updated background audio"""# Get the duration of the audio clip in mssegment_ms = len(audio_clip)### START CODE HERE ### # Step 1: Use one of the helper functions to pick a random time segment onto which to insert # the new audio clip. (≈ 1 line)segment_time = get_random_time_segment(segment_ms)# Step 2: Check if the new segment_time overlaps with one of the previous_segments. If so, keep # picking new segment_time at random until it doesn't overlap. (≈ 2 lines)while is_overlapping(segment_time, previous_segments):segment_time = get_random_time_segment(segment_ms)# Step 3: Add the new segment_time to the list of previous_segments (≈ 1 line)previous_segments.append(segment_time)### END CODE HERE #### Step 4: Superpose audio segment and backgroundnew_background = background.overlay(audio_clip, position = segment_time[0])return new_background, segment_time

构建标签

# GRADED FUNCTION: insert_onesdef insert_ones(y, segment_end_ms):"""Update the label vector y. The labels of the 50 output steps strictly after the end of the segment should be set to 1. By strictly we mean that the label of segment_end_y should be 0 while, the50 followinf labels should be ones.Arguments:y -- numpy array of shape (1, Ty), the labels of the training examplesegment_end_ms -- the end time of the segment in msReturns:y -- updated labels"""# duration of the background (in terms of spectrogram time-steps)segment_end_y = int(segment_end_ms * Ty / 10000.0)# Add 1 to the correct index in the background label (y)### START CODE HERE ### (≈ 3 lines)for i in range(segment_end_y + 1, segment_end_y + 51):if i < Ty:y[0, i] = 1### END CODE HERE ###return y

构建带标签的数据

# GRADED FUNCTION: create_training_exampledef create_training_example(background, activates, negatives):"""Creates a training example with a given background, activates, and negatives.Arguments:background -- a 10 second background audio recordingactivates -- a list of audio segments of the word "activate"negatives -- a list of audio segments of random words that are not "activate"Returns:x -- the spectrogram of the training exampley -- the label at each time step of the spectrogram"""# Set the random seednp.random.seed(18)# Make background quieterbackground = background - 20### START CODE HERE #### Step 1: Initialize y (label vector) of zeros (≈ 1 line)y = np.zeros((1, Ty))# Step 2: Initialize segment times as empty list (≈ 1 line)previous_segments = []### END CODE HERE #### Select 0-4 random "activate" audio clips from the entire list of "activates" recordingsnumber_of_activates = np.random.randint(0, 5)random_indices = np.random.randint(len(activates), size=number_of_activates)random_activates = [activates[i] for i in random_indices]### START CODE HERE ### (≈ 3 lines)# Step 3: Loop over randomly selected "activate" clips and insert in backgroundfor random_activate in random_activates:# Insert the audio clip on the backgroundbackground, segment_time = insert_audio_clip(background, random_activate, previous_segments)# Retrieve segment_start and segment_end from segment_timesegment_start, segment_end = segment_time# Insert labels in "y"y = insert_ones(y, segment_end)### END CODE HERE #### Select 0-2 random negatives audio recordings from the entire list of "negatives" recordingsnumber_of_negatives = np.random.randint(0, 3)random_indices = np.random.randint(len(negatives), size=number_of_negatives)random_negatives = [negatives[i] for i in random_indices]### START CODE HERE ### (≈ 2 lines)# Step 4: Loop over randomly selected negative clips and insert in backgroundfor random_negative in random_negatives:# Insert the audio clip on the background background, _ = insert_audio_clip(background, random_negative, previous_segments)### END CODE HERE #### Standardize the volume of the audio clip background = match_target_amplitude(background, -20.0)# Export new training example file_handle = background.export("train" + ".wav", format="wav")print("File (train.wav) was saved in your directory.")# Get and plot spectrogram of the new recording (background with superposition of positive and negatives)x = graph_spectrogram("train.wav")return x, y

模型建立

接下来我们利用已经处理好的训练集数据进行训练
在这里插入图片描述
模型先是对输入进行一维卷积,随后通过两层GRU单元以及softmax得到输出

# GRADED FUNCTION: modeldef model(input_shape):"""Function creating the model's graph in Keras.Argument:input_shape -- shape of the model's input data (using Keras conventions)Returns:model -- Keras model instance"""X_input = Input(shape = input_shape)### START CODE HERE #### Step 1: CONV layer (≈4 lines)X = Conv1D(196, 15, strides=4)(X_input)                                 # CONV1DX = BatchNormalization()(X)                                 # Batch normalizationX = Activation('relu')(X)                                # ReLu activationX = Dropout(0.8)(X)                                 # dropout (use 0.8)# Step 2: First GRU Layer (≈4 lines)X = GRU(128, return_sequences=True)(X)                                 # GRU (use 128 units and return the sequences)X = Dropout(0.8)(X)                                  # dropout (use 0.8)X = BatchNormalization()(X)                                # Batch normalization# Step 3: Second GRU Layer (≈4 lines)X = GRU(128, return_sequences=True)(X)                                   # GRU (use 128 units and return the sequences)X = Dropout(0.8)(X)                                 # dropout (use 0.8)X = BatchNormalization()(X)                                # Batch normalizationX = Dropout(0.8)(X)                              # dropout (use 0.8)# Step 4: Time-distributed dense layer (≈1 line)X = TimeDistributed(Dense(1, activation = "sigmoid"))(X) # time distributed  (sigmoid)### END CODE HERE ###model = Model(inputs = X_input, outputs = X)return model  
model = model(input_shape = (Tx, n_freq))
model = load_model('./models/tr_model.h5')
opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, decay=0.01)
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=["accuracy"])
model.fit(X, Y, batch_size = 5, epochs=1)

最终获得了不错的效果

这篇关于深度学习作业L5W3(2):Improvise a Jazz Solo with an LSTM Network的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261361

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499