opencv 分类器的训练(生成.xml, CascadeClassifier)

2023-10-22 07:50

本文主要是介绍opencv 分类器的训练(生成.xml, CascadeClassifier),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

检测的物体是否为绝对刚性的物体,也就是检测的目标是一个固定物体,没有变化(如特定公司的商标),这样的物体只要提供一份样本就可以进行训练。但绝大数时候我们想进行训练的目标是非绝对刚性的物体,如对人的检测,包括人脸识别、手势识别。

分类器的训练以分为以下三部进行:

1、 样本的创建(正样本和负样本)
2、 训练分类器(生成.xml)
3、 利用训练好的分类器进行目标检测

正样本:所谓正样本就是只包含检测目标的图片

               1、要求尺寸必须相同,例如40x30

               2、进行灰度处理

负样本:不包含检测目标的任何图片(背景图片)               

             1.不要求样本尺寸,但要大于等于正样本的大小;且负样本不能重复,要增大负样本的差异性。

              2.负样本灰度化,同正样本操作相同。

制作正样本:

           1、收集数据(截图或拍照等)进行处理:

            2、 将所有图像调整成一致大小,我用的“美图看看”这款软件,批量处理的,我处理的统一尺寸是40x30

           3、进行灰度处理

#include "stdafx.h"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>using namespace cv;
using namespace std;int main()
{char buffer[50];char buffer1[50];int i = 0;for (i = 1; i <= 100; i++){sprintf_s(buffer, "C:\\Users\\Administrator\\Desktop\\xml\\ww\\%d.png", i);sprintf_s(buffer1, "C:\\Users\\Administrator\\Desktop\\xml\\pos\\%d.png", i);Mat src = imread(buffer, IMREAD_COLOR);if (src.empty()){return -1;}cvtColor(src, src, COLOR_BGR2GRAY);equalizeHist(src, src);imwrite(buffer1, src);}return 0;
}

4、这样正样本就处理好了,接下来要生成posdata.dat文件

将opencv安装目录的D:\Program Files\opencv\build\x64\vc15\bin\opencv_createsamples.exe和opencv_traincascade.exe复制到需要进行图像处理的目录下(也可不复制,操作时加上目录)

制作dos命令操作文件dat_cmd.bat:输入dir /b > posdata.dat(表示将当前文件写入posdata.dat)

双击执行dat_cmd.bat生成posdata.dat,打开posdata.dat,删除不需要文件

在对文件进行处理,使其含有图片信息,格式为:图片路径     检测目标在图片中的个数     起始监测点坐标(x,y)        图片大小(w,h)

5、生成训练.vec文件

执行生成pos.vec

参数说明

命令行参数:

  • -vec <vec_file_name>

    输出文件,内含用于训练的正样本。

  • -img <image_file_name>

    输入图像文件名(例如一个公司的标志)。

  • -bg <background_file_name>

    背景图像的描述文件,文件中包含一系列的图像文件名,这些图像将被随机选作物体的背景。

  • -num <number_of_samples>

    生成的正样本的数目。

  • -bgcolor <background_color>

    背景颜色(目前为灰度图);背景颜色表示透明颜色。因为图像压缩可造成颜色偏差,颜色的容差可以由 -bgthresh 指定。所有处于 bgcolor-bgthresh 和 bgcolor+bgthresh 之间的像素都被设置为透明像素。

  • -bgthresh <background_color_threshold>

  • -inv

    如果指定该标志,前景图像的颜色将翻转。

  • -randinv

    如果指定该标志,颜色将随机地翻转。

  • -maxidev <max_intensity_deviation>

    前景样本里像素的亮度梯度的最大值。

  • -maxxangle <max_x_rotation_angle>

    X轴最大旋转角度,必须以弧度为单位。

  • -maxyangle <max_y_rotation_angle>

    Y轴最大旋转角度,必须以弧度为单位。

  • -maxzangle <max_z_rotation_angle>

    Z轴最大旋转角度,必须以弧度为单位。

  • -show

    很有用的调试选项。如果指定该选项,每个样本都将被显示。如果按下 Esc 键,程序将继续创建样本但不再显示。

  • -w <sample_width>

    输出样本的宽度(以像素为单位)。

  • -h <sample_height>

    输出样本的高度(以像素为单位)。

6、处理负样本:对负样本只需得到.dat文件(同正样本处理)

二、训练级联分类器

1、将生成的的负样本negdata.dat复制到和opencv_traincascade.exe同目录下(也可以吧正样本的pos.vec复制到此目录下)

并且制作训练命令train.bat

opencv_traincascade.exe -data cascade -vec pos.vec -bg negdata.dat -numPos 41 -numNeg 100 -numStages 20 -minHitRate 0.999 -maxFalseAlarmRate 0.4 -featureType HAAR -w 40 -h 20

注:pause是为了查看cmd执行

参数说明:

  1. 通用参数:

    • -data <cascade_dir_name>

      目录名,如不存在训练程序会创建它,用于存放训练好的分类器。

    • -vec <vec_file_name>

      包含正样本的vec文件名(由 opencv_createsamples 程序生成)。

    • -bg <background_file_name>

      背景描述文件,也就是包含负样本文件名的那个描述文件。

    • -numPos <number_of_positive_samples>

      每级分类器训练时所用的正样本数目。

    • -numNeg <number_of_negative_samples>

      每级分类器训练时所用的负样本数目,可以大于 -bg 指定的图片数目。

    • -numStages <number_of_stages>

      训练的分类器的级数。

    • -precalcValBufSize <precalculated_vals_buffer_size_in_Mb>

      缓存大小,用于存储预先计算的特征值(feature values),单位为MB。

    • -precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb>

      缓存大小,用于存储预先计算的特征索引(feature indices),单位为MB。内存越大,训练时间越短。

    • -baseFormatSave

      这个参数仅在使用Haar特征时有效。如果指定这个参数,那么级联分类器将以老的格式存储。

  2. 级联参数:

    • -stageType <BOOST(default)>

      级别(stage)参数。目前只支持将BOOST分类器作为级别的类型。

    • -featureType<{HAAR(default), LBP}>

      特征的类型: HAAR - 类Haar特征; LBP - 局部纹理模式特征。

    • -w <sampleWidth>

    • -h <sampleHeight>

      训练样本的尺寸(单位为像素)。必须跟训练样本创建(使用 opencv_createsamples 程序创建)时的尺寸保持一致。

  3. Boosted分类器参数:

    • -bt <{DAB, RAB, LB, GAB(default)}>

      Boosted分类器的类型: DAB - Discrete AdaBoost, RAB - Real AdaBoost, LB - LogitBoost, GAB - Gentle AdaBoost。

    • -minHitRate <min_hit_rate>

      分类器的每一级希望得到的最小检测率。总的检测率大约为 min_hit_rate^number_of_stages。

    • -maxFalseAlarmRate <max_false_alarm_rate>

      分类器的每一级希望得到的最大误检率。总的误检率大约为 max_false_alarm_rate^number_of_stages.

    • -weightTrimRate <weight_trim_rate>

      Specifies whether trimming should be used and its weight. 一个还不错的数值是0.95。

    • -maxDepth <max_depth_of_weak_tree>

      弱分类器树最大的深度。一个还不错的数值是1,是二叉树(stumps)。

    • -maxWeakCount <max_weak_tree_count>

      每一级中的弱分类器的最大数目。The boosted classifier (stage) will have so many weak trees (<=maxWeakCount), as needed to achieve the given -maxFalseAlarmRate.

  4. 类Haar特征参数:

    • -mode <BASIC (default) | CORE | ALL>

      选择训练过程中使用的Haar特征的类型。 BASIC 只使用右上特征, ALL 使用所有右上特征和45度旋转特征。更多细节请参考 [Rainer2002] 。

  5. LBP特征参数:

    LBP特征无参数。

当 opencv_traincascade 程序训练结束以后,训练好的级联分类器将存储于文件cascade.xml中,这个文件位于 -data 指定的目录中。这个目录中的其他文件是训练的中间结果,当训练程序被中断后,再重新运行训练程序将读入之前的训练结果,而不需从头重新训练。训练结束后,你可以删除这些中间文件。

训练结束后,你就可以测试你训练好的级联分类器了!

三、训练器的测试

参考CascadeClassifier级联分类器的使用https://blog.csdn.net/WangHuiShou/article/details/81201698

四、考 训练分类器所遇到的问题

1、

-bg 参数不能直接跟目录,因为neg目录下手下读取的不是negdata.dat文件,导致失败

2、问题:traincascade's error (Required leaf false alarm rate achieved. Branch training terminated.)

解析:虚警率已经达标 不再继续训练 ,这里不能说是一个错误,只能说制作出来的xml文件可能较差

解决办法:先测试一下生成的cascade.xml,如果效果没有达到你的预期,有以下几个解决方案:
1:maxfalsealarm值应该设定到0.4 - 0.5之间
2:正负样本数太少,增大样本数

四、参考网站

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/user_guide/ug_traincascade.html#id6

这篇关于opencv 分类器的训练(生成.xml, CascadeClassifier)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260083

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.