LeetCode 1879. 两个数组最小的异或值之和【记忆化搜索,状压DP,位运算】2145

本文主要是介绍LeetCode 1879. 两个数组最小的异或值之和【记忆化搜索,状压DP,位运算】2145,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你两个整数数组 nums1 和 nums2 ,它们长度都为 n 。

两个数组的 异或值之和 为 (nums1[0] XOR nums2[0]) + (nums1[1] XOR nums2[1]) + ... + (nums1[n - 1] XOR nums2[n - 1]) (下标从 0 开始)。

  • 比方说,[1,2,3] 和 [3,2,1] 的 异或值之和 等于 (1 XOR 3) + (2 XOR 2) + (3 XOR 1) = 2 + 0 + 2 = 4 。

请你将 nums2 中的元素重新排列,使得 异或值之和 最小 。

请你返回重新排列之后的 异或值之和 。

示例 1:

输入:nums1 = [1,2], nums2 = [2,3]
输出:2
解释:将 `nums2` 重新排列得到 `[3,2] 。`
异或值之和为 (1 XOR 3) + (2 XOR 2) = 2 + 0 = 2

示例 2:

输入:nums1 = [1,0,3], nums2 = [5,3,4]
输出:8
解释:将 `nums2 重新排列得到` `[5,4,3] 。`
异或值之和为 (1 XOR 5) + (0 XOR 4) + (3 XOR 3) = 4 + 4 + 0 = 8

提示:

  • n == nums1.length
  • n == nums2.length
  • 1 <= n <= 14
  • 0 <= nums1[i], nums2[i] <= 10^7

解法 状压DP

设数组 n u m s 1 nums_1 nums1 n u m s 2 nums_2 nums2 的长度为 n n n ,我们可以用一个长度为 n n n 的二进制数 m a s k mask mask 表示数组 n u m s 2 nums_2 nums2 中的数被选择的状态:如果 m a s k mask mask 从低到高的第 i i i 位为 1 1 1 ,说明 n u m s 2 [ i ] nums_2[i] nums2[i] 已经被选择,否则说明其未被选择。

这样一来,我们就可以使用动态规划解决本题。记 f [ m a s k ] f[mask] f[mask] 表示当我们选择了数组 n u m s 2 nums_2 nums2 中的元素的状态为 m a s k mask mask,并且选择了数组 n u m s 1 nums_1 nums1 的前 count ( mask ) \text{count}(\textit{mask}) count(mask) 个元素的情况下,可以组成的最小的异或值之和

或者使用更加直观的 f [ i ] [ m a s k ] f[i][mask] f[i][mask] ,表示选择数组 n u m s 1 nums_1 nums1 0 , … , i 0, \dots, i 0,,i 下标的元素、且选择数组 n u m s 2 nums_2 nums2 中元素的状态为 m a s k mask mask 情况下的最小异或值之和。

这里的 c o u n t ( m a s k ) count(mask) count(mask) 表示 m a s k mask mask 的二进制表示中 1 1 1 的个数。为了叙述方便,记 c = count ( mask ) c = \text{count}(\textit{mask}) c=count(mask) 。在进行状态转移时,我们可以枚举 nums 1 [ c − 1 ] \textit{nums}_1[c-1] nums1[c1] n u m s 2 nums_2 nums2 中的哪一个元素进行了异或运算,假设其为 n u m s 2 [ i ] nums_2[i] nums2[i] ,那么有状态转移方程:
f [ mask ] = min ⁡ mask 二进制表示的第  i 位为  1 { f [ mask \ i ] + ( nums 1 [ c − 1 ] ⊕ nums 2 [ i ] ) } f[\textit{mask}] = \min_{\textit{mask} ~二进制表示的第~ i ~位为~ 1} \big\{ f[\textit{mask} \backslash i] + (\textit{nums}_1[c-1] \oplus \textit{nums}_2[i]) \big\} f[mask]=mask 二进制表示的第 i 位为 1min{f[mask\i]+(nums1[c1]nums2[i])}

其中 ⊕ \oplus 表示异或运算, mask \ i \textit{mask} \backslash i mask\i 表示将 m a s k mask mask 的第 i i i 位从 1 1 1 变为 0 0 0 。最终的答案即为 f [ 2 n − 1 ] f[2^n - 1] f[2n1]

细节: mask \ i \textit{mask} \backslash i mask\i 可以使用异或运算 mask ⊕ 2 i \textit{mask} \oplus 2^i mask2i 实现;

判断 m a s k mask mask 的第 i i i 位是否为 111,等价于判断按位与运算 mask ∧ 2 i \textit{mask} \wedge 2^i mask2i 的值是否大于 0 0 0 ;或者 m a s k > > i & 1 mask\ >>\ i\ \&\ 1 mask >> i & 1 是否为 1 1 1

由于我们需要求出的是最小值,因此可以将所有的状态初始化为极大值 ∞ \infty ,方便进行状态转移。动态规划的边界条件为 f [ 0 ] = 0 f[0]=0 f[0]=0 ,即未选择任何数时,异或值之和为 0 0 0

class Solution {
public:int minimumXORSum(vector<int>& nums1, vector<int>& nums2) {int n = nums1.size();vector<int> f(1 << n, INT_MAX);f[0] = 0;for (int mask = 1; mask < (1 << n); ++mask) {for (int i = 0; i < n; ++i) {if (mask & (1 << i)) {f[mask] = min(f[mask], f[mask ^ (1 << i)] + (nums1[__builtin_popcount(mask) - 1] ^ nums2[i]));}}}return f[(1 << n) - 1];}
};

复杂度分析:

  • 时间复杂度: O ( 2 n ⋅ n ) O(2^n \cdot n) O(2nn) ,其中 n n n 是数组 n u m s 1 nums_1 nums1 n u m s 2 nums_2 nums2 的长度。状态的数量为 O ( 2 n ) O(2^n) O(2n) ,每个状态需要 O ( n ) O(n) O(n) 的时间计算结果,因此总时间复杂度为 O ( 2 n ⋅ n ) O(2^n \cdot n) O(2nn)
  • 空间复杂度: O ( 2 n ) O(2^n) O(2n) ,即为状态的数量。

下面是记忆化搜索的代码:

class Solution {
public:int minimumXORSum(vector<int>& nums1, vector<int>& nums2) {int n = nums1.size();vector<vector<int>> memo(n, vector<int>(1 << n, INT_MAX));// memo[i][j]表示在0~i在 j 代表的元素没有被选中时的最小异或值之和function<int(int, int)> f = [&](int i, int j) -> int {if (i < 0) return 0;int &ans = memo[i][j];if (ans != INT_MAX) return ans;for (int k = 0; k < n; ++k) if ((j >> k) & 1) ans = min(ans, f(i - 1, j ^ (1 << k)) + (nums1[i] ^ nums2[k]));return ans;};return f(n - 1, (1 << n) - 1);}
};

这篇关于LeetCode 1879. 两个数组最小的异或值之和【记忆化搜索,状压DP,位运算】2145的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/259526

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a