利用基站定位数据进行商圈划分

2023-10-22 04:40

本文主要是介绍利用基站定位数据进行商圈划分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题概述

  手机用户在使用短信、通话等业务、开关机、位置更新等的时候均产生定位数据,每条定位数据均包含了手机用户所处基站的编号、时间和唯一标识用户的EMASI号等。

  将每个基站覆盖区域视为一个商圈,通过归纳基站覆盖区域的人流量和人均停留时间等特征,即可划分出不同类别的商圈。然后挑选出高价值商圈,并结合商圈用户活动特点,有针对性开展促销等活动。

  现在共有431名用户的定位信息(Excel格式),包含用户编号以及如下考查指标:

  1.人均流量:反应商圈的大致用户密度

  2.工作日上班时段人均停留时间:用以识别上班人群集中的商圈

  3.凌晨人均停留时间:用以识别住宅区居民集中的商圈

  4.周末人均停留时间:用以识别周末时段人群集中的商圈

  分析主要分两步,首先用tableau进行可视化分析,了解各基站(商圈)的大致情况;然后通过机器学习,采用聚类算法,对各商圈进行进一步的标识。

 

二、初步分析

  从以下图中,可以看到各商圈的日均人流量和各时段的停留时间情况。其中在人均停留时间的三张图中,均有明显的断层现象,我们可以初步判定,断层处即为商圈的类别划分点,断层左边的商圈表示该时段人均停留时间长,右边表示停留时间短。

 

三、聚类分析

  由于各个属性之间的数量级相差较大,在进行聚类前,需要进行离差标准化处理,即将各属性数据按比例缩放到一定范围,得到建模数据。

代码如下:

import pandas as pd
import sklearn.preprocessing as prc
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    # 用来正常显示负号data=pd.read_excel("../data/business_circle.xls")                     # 读取数据pm=prc.MinMaxScaler()
data_rd=pm.fit_transform(data.ix[:,1:])                               # 数据标准化
data_rd= pd.DataFrame(data_rd,columns=data.columns[1:])               # 标准化后的数据重新转为df格式

  

  采用层次聚类算法对建模数据进行聚类,画出谱系聚类图 。聚类类别数取3 ,根据聚类结果,输出聚类结果存入excel,并绘制各类别的四个特征折线图。

代码如下:

import pandas as pd
import sklearn.preprocessing as prc
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']          # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False            # 用来正常显示负号data=pd.read_excel("../data/business_circle.xls")                     # 读取数据pm=prc.MinMaxScaler()
data_rd=pm.fit_transform(data.ix[:,1:])                               # 数据标准化
data_rd=pd.DataFrame(data_rd,columns=data.columns[1:])                # 标准化后的数据重新转为df格式# print(data_rd)from scipy.cluster.hierarchy import linkage,dendrogram                # 导入scipy的层次聚类函数
Z=linkage(data_rd,method="ward",metric="euclidean")                   # 谱系聚类图
P=dendrogram(Z,0)                                                     # 画谱系聚类图
# plt.show()from sklearn.cluster import AgglomerativeClustering                      # 导入sklearn的层次聚类函数
model = AgglomerativeClustering(n_clusters = 3, linkage = 'ward')        # 设置参数,建立模型
model.fit(data_rd)                                                       # 训练模型r= pd.concat([data_rd,pd.Series(model.labels_,index = data_rd.index)],axis = 1)     # 详细输出每个样本对应的类别
r.columns = list(data_rd.columns) + [u'聚类类别']                                    # 重命名表头style = ['ro-', 'go-', 'bo-']
xlabels = [u'工作日上班时间人均停留时间', u'凌晨人均停留时间', u'周末人均停留时间', u'日均人流量']
pic_output = '../result/picture/type_'                                                                   # 聚类图片文件名前缀for i in range(3):                                          # 逐一作图,作出不同样式plt.figure()tmp = r[r[u'聚类类别'] == i].ix[:, :4]                  # 提取每一类,用于绘制折线图data_rs=r[r[u'聚类类别'] == i].ix[:,:]                  # 提取每一类,包含类别号data_rs=pd.merge(data,data_rs,how="outer", \on=[u'工作日上班时间人均停留时间', u'凌晨人均停留时间', u'周末人均停留时间', u'日均人流量'], \)                                               # 加上基站编号,再用于输出data_rs["聚类类别"] = i + 1data_rs.to_excel("../result/data"+str(i+1)+".xls")       # 每一类保存为一个单独excel文件for j in range(len(tmp)):plt.plot(range(1, 5), tmp.iloc[j], style[i])plt.xticks(range(1, 5), xlabels, rotation=20)               # 坐标标签plt.title(u'商圈类别%s' % (i + 1))                           # 商圈类别名称,从1开始编号plt.subplots_adjust(bottom=0.15)                            # 调整底部plt.savefig(u'%s%s.png' % (pic_output, i))                  # 保存图片

  

谱系聚类图:

 

 

 

 

 

 

从以上三张图来看

类别2凌晨和周末人均停留时间较长,工作日人均停留时间短,日均人流量小,可以认为是住宅区域。

类别3工作日人均停留时间长,凌晨和周末人均停留时间较短,人流量偏小,可以认为是工作区域。

以上两类区域,如果开展促销活动,可以考虑采取一些针对居民和上班族特点的方式。

类别1在3个时段人均停留时间均不长,但人流量最大,我们认为这类人群相对于住宅区居民和上班人士,往往会对促销之类活动更有兴趣,因此,该类商圈是最宜进行促销的。在输出的结果文件中找到该类的基站编号,即能确定具体的活动地点。

 

 

 

转载于:https://www.cnblogs.com/Lengjie/p/9650574.html

这篇关于利用基站定位数据进行商圈划分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/259099

相关文章

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前