【DNDC模型】农田生态、陆地生态系统的动态模拟模型

2023-10-21 10:59

本文主要是介绍【DNDC模型】农田生态、陆地生态系统的动态模拟模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DNDC模型

DNDC模型是一个用于模拟和追踪农业生态系统中碳氮生物地球化学循环的过程模型,可以用来模拟农业生态系统碳氮排放、农作物产量、土壤固碳作用以及硝酸盐淋失等过程。

模型由两部分组成:第一部分包括土壤气候、植物生长和有机质分解等3个子模型;第二部分包括硝化、反硝化和发酵等3个子模型。

6个子模型均以小时或日为时间步长进行模拟,并互相传递信息,用于追踪不同气象、土地利用、土壤、管理条件下植物-土壤系统中碳氮元素的迁移和转化过程。

DNDC模型具有模拟功能强大、操作简便、软件界面简洁等优点,已在世界许多地区得到验证应用,在我国旱作农业区,DNDC模型也被证明具有很好的模拟效果。

DNDC(Denitrification-Decomposition,反硝化-分解模型)是目前国际上最为成功的模拟生物地球化学循环的模型之一,自开发以来,经过不断完善和改进,从模拟简单的农田生态系统发展成为可以模拟几乎所有陆地生态系统的动态模拟模型

在“应用长期观测数据评价土壤有机质模型”国际高级学术讨论会上,DNDC被评为土壤碳库评估较好模型之一

DNDC模型在土地利用变化、未来气候变化下的建模方法及温室气体时空动态模拟[1]

重点

1. 理解DNDC原理并能够应用DNDC模型进行碳排放模拟;

2. 熟练应用ArcGIS、ENVI等软件进行DNDC数据制备;

3. 掌握土地利用变化及未来气候变化下的DNDC模拟流程;

4. 结合实例,熟练应用DNDC进行温室气体时空动态模拟;

DNDC模型

1.1 碳循环模型简介

1.2 DNDC模型原理

1.3 DNDC下载与安装

1.4 DNDC注意事项

DNDC初步操作

2.1 DNDC界面介绍

2.2 DNDC数据及格式

2.3 DNDC点尺度模拟

2.4 DNDC区域尺度模拟

2.5 DNDC结果分析

DNDC气象数据制备

DNDC土地数据制备

4.1 遥感技术简介

4.2 ENVI软件界面

4.3 遥感图像获取与显示

4.4 遥感图像处理

4.5土地利用遥感解译

DNDC土壤数据制备

5.1 土壤数据原理

5.2 土壤类型数据处理

5.3 土壤粒径组成与参数库查询

5.4 SPAW软件土壤数据制备

DNDC区域数据制备

6.1 DNDC区域数据结构

6.2 基于遥感图像的地块提取

6.3 地块中心点位提取与坐标计算

6.4 区域数据制备

土地利用变化下的DNDC模拟

7.1 土地利用变化与碳排放

7.2 基于转移矩阵的土地利用变化分析

7.3 土地利用变化情景分析

7.4 未来土地利用预测

7.5 土地利用变化下的DNDC模拟

气候变化下的DNDC模拟

8.1 CMIP6数据简介

8.2 CMIP6数据下载

8.3 CMIP6数据显示

8.4 CMIP6数据转DNDC气象数据

8.5 未来气候变化下的DNDC模拟

基于DNDC模型的减排潜力模拟

9.1 双碳目标与碳减排措施

9.2 DNDC减排潜力模拟

DNDC案例分析

10. 基于DNDC的温室气体排放时空动态模拟

这篇关于【DNDC模型】农田生态、陆地生态系统的动态模拟模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253964

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}