sklearn调包侠之KNN算法

2023-10-21 08:40
文章标签 算法 knn sklearn 调包

本文主要是介绍sklearn调包侠之KNN算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3629157-5202565eeac207ff.png

天下武功,唯快不破。今天就正式讲解如何通过《sklearn小抄》武林秘籍,成为一代宗师调包侠。欲练此功,必先自宫;就算自宫,未必成功;若不自宫,也能成功。传说江湖(机器学习领域)有两大派别:一是学术派,该派资历高,家境好,多为名门世家(学历高,数学好),重基础(数学推导和理论知识);一是实践派,以找人切磋为主(实践为主),多在切磋中提升能力。《机器学习实战》系列为学术派,《sklearn调包侠》系列为实践派,该系列会简单讲解原理,多引用于《机器学习实战》系列的算法讲解(必要的内力),然后在实操中完成各机器学习算法。
tips:在本篇中会按小抄详细过一遍,之后就可能会随意一些。

KNN算法原理

计算测试样本与每个训练样本的距离,取前k个距离最小的训练样本,最后选择这k个样本中出现最多的分类,作为测试样本的分类。
如图所示,绿色的为测试样本,当k取3时,该样本就属于红色类;当k取5时,就属于蓝色类了。所以k值的选择很大程度影响着该算法的结果,通常k的取值不大于20。

3629157-d180f5f5f990ace7.png
KNN算法原理

实战——糖尿病预测

数据导入

本数据可在kaggle中进行下载,读者可以去我的百度云链接进行下载。
(链接:https://pan.baidu.com/s/1gqaGuQ9kWZFfc-SXbYFDkA 密码:lxfx)
该数据为csv格式文件,我们通过pandas读入:

import numpy as np
import pandas as pddata = pd.read_csv('data/pima-indians-diabetes/diabetes.csv')
data.head()
3629157-dcb07b473621e699.png

我们简单看下各字段的意思:

  • Pregnancies:怀孕的次数
  • Glucose:血浆葡萄糖浓度
  • BloodPressure:舒张压
  • SkinThickness:肱三头肌皮肤皱皱厚度
  • Insulin: 胰岛素
  • BMI:身体质量指数
  • Dia....:糖尿病血统指数
  • Age:年龄
  • Outcone:是否糖尿病,1为是

我们把数据划分为特征和label,前8列为特征,最后一列为label。

X = data.iloc[:, 0:8]
Y = data.iloc[:, 8]
切分数据集

在模型训练前,需要将数据集切分为训练集和测试集(73开或者其它),这里选择82开,使用sklearn中model_selection模块中的train_test_split方法。

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=22)

这里的test_size为测试集的比例,random_state为随机种子,这里可设置任意数字,保证下次运行同样可以选择出对应的训练集和测试集。

数据预处理

这里没有对数据进行预处理。

模型训练与评估

KNN算法使用sklearn.neighbors模块中的KNeighborsClassifier方法。常用的参数如下:

  • n_neighbors,整数,也就是k值。
  • weights,默认为‘uniform’;这个参数可以针对不同的邻居指定不同的权重,也就是说,越近可以权重越高,默认是一样的权重。‘distance’可以设置不同权重。

在sklearn.neighbors还有一个变种KNN算法,为RadiusNeighborsClassifier算法,可以使用一定半径的点来取代距离最近的k个点。
接下来,我们通过设置weight和RadiusNeighborsClassifier,对算法进行比较。

from sklearn.neighbors import KNeighborsClassifier,RadiusNeighborsClassifiermodel1 = KNeighborsClassifier(n_neighbors=2)
model1.fit(X_train, Y_train)
score1 = model1.score(X_test, Y_test)model2 = KNeighborsClassifier(n_neighbors=2, weights='distance')
model2.fit(X_train, Y_train)
score2 = model2.score(X_test, Y_test)model3 = RadiusNeighborsClassifier(n_neighbors=2, radius=500.0)
model3.fit(X_train, Y_train)
score3 = model3.score(X_test, Y_test)print(score1, score2, score3)#result
#0.714285714286 0.701298701299 0.649350649351

可以看出默认情况的KNN算法结果最好。

交叉验证

通过上述结果可以看出:默认情况的KNN算法结果最好。这个判断准确么?答案是不准确,因为我们只是随机分配了一次训练和测试样本,可能下次随机选择训练和测试样本,结果就不一样了。这里的方法为:交叉验证。我们把数据集划分为10折,每次用9折训练,1折测试,就会有10次结果,求十次的平均即可。当然,可以设置cv的值,选择不同的折数。

from sklearn.model_selection import cross_val_scoreresult1 = cross_val_score(model1, X, Y, cv=10)
result2 = cross_val_score(model2, X, Y, cv=10)
result3 = cross_val_score(model3, X, Y, cv=10)print(result1.mean(), result2.mean(), result3.mean())# result
# 0.712235133288 0.67966507177 0.64976076555

可以看出,还是默认情况的KNN算法结果最好。

模型调优

无模型调优。

这篇关于sklearn调包侠之KNN算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253242

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int