最优化方法——Matlab实现黄金分割法一维搜索

2023-10-21 08:30

本文主要是介绍最优化方法——Matlab实现黄金分割法一维搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 黄金分割法一维搜索原理
      • 算法流程:
    • Matlab代码
      • 命令行窗口结果打印:
        • 更换匿名函数:
      • 《最优化方法》教材上写成表的答案:
      • 黄金分割法的一些性质

黄金分割法一维搜索原理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
若保留区间为[x1,b],我们得到的结果是一致的.
该方法称为黄金分割法,实际计算取近似值: x1=a+0.382(b – a), x2=a+0.618(b – a),
所以黄金分割法又称为0.618法.
黄金分割法每次缩小区间的比例是一致的,每次将区间长度缩小到原来的0.618倍.

算法流程:

在这里插入图片描述
黄金分割法也称作0.618法,一维指的是只含有一个未知量的情况。

Matlab代码

用matlab实现黄金分割法求解f(x)=x^2-x+2在(-1,3)上的最小值:

clc,clear,close all;
a = -1; b =3;
ep = 0.08*(b-a);
x = a:0.1:b;
f_x = x.^2-x+2;
plot(x, f_x, 'linewidth', 1.5)
axis([-1, 3, 0, 8])
title('f(x)=x^2-x+2')
grid on;
flag = 0;
cnt = 0;
pause(0.5)
while 1fprintf('第%d次迭代:\n', cnt)if flag==0x2 = a + 0.618*(b-a);f2 = x2.^2-x2+2;x1 = a + b - x2;f1 = x1.^2-x1+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)hold onstem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==1x1 = a + b - x2;f1 = x1.^2-x1+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==2x2 = a + 0.618*(b-a);f2 = x2.^2-x2+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)endif abs(b-a)<epxb = (a+b)/2;disp('最优解为:')fprintf('xb = %f, f(xb) = %f\n', xb, xb.^2-xb+2)disp('黄金分割法一维搜索完毕.')breakelseif f1<f2disp('f1<f2')b = x2;x2 = x1;f2 = f1;flag = 1;elseif f1==f2disp('f1=f2')a = x1;b = x2;flag = 0;elseif f1>f2disp('f1>f2')a = x1;x1 = x2;f1 = f2;flag = 2;endcnt = cnt + 1;
end
pause(0.5)
stem(xb, xb^2-xb+2, 'r', 'linewidth', 2)

代码运行有动态效果,这里就不再保存为GIF动图了,可以复制一键运行尝试:
在这里插入图片描述

命令行窗口结果打印:

0次迭代:
a = -1.000000, b = 3.000000
x1 = 0.528000, x2 = 1.472000, f1 = 1.750784, f2 = 2.694784
f1<f2
第1次迭代:
a = -1.000000, b = 1.472000
x1 = -0.056000, x2 = 0.528000, f1 = 2.059136, f2 = 1.750784
f1>f2
第2次迭代:
a = -0.056000, b = 1.472000
x1 = 0.528000, x2 = 0.888304, f1 = 1.750784, f2 = 1.900780
f1<f2
第3次迭代:
a = -0.056000, b = 0.888304
x1 = 0.304304, x2 = 0.528000, f1 = 1.788297, f2 = 1.750784
f1>f2
第4次迭代:
a = 0.304304, b = 0.888304
x1 = 0.528000, x2 = 0.665216, f1 = 1.750784, f2 = 1.777296
f1<f2
第5次迭代:
a = 0.304304, b = 0.665216
x1 = 0.441520, x2 = 0.528000, f1 = 1.753420, f2 = 1.750784
f1>f2
第6次迭代:
a = 0.441520, b = 0.665216
x1 = 0.528000, x2 = 0.579764, f1 = 1.750784, f2 = 1.756362
最优解为:
xb = 0.553368, f(xb) = 1.752848
黄金分割法一维搜索完毕.
>> 
更换匿名函数:

通过更改目标函数 f_x ,对自定义的目标函数进行一维搜索的代码:

clc,clear,close all;
a = -1; b =3;
ep = 0.08*(b-a);
x = a:0.1:b;
f_x = @(x)x.^2-3*x+2;
plot(x, f_x(x), 'linewidth', 1.5)
axis tight
tl = func2str(f_x);
title(tl(5:end))
grid on;
flag = 0;
cnt = 0;
pause(0.5)
while 1fprintf('第%d次迭代:\n', cnt)if flag==0x2 = a + 0.618*(b-a);f2 = f_x(x2);x1 = a + b - x2;f1 = f_x(x1);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)hold onstem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==1x1 = a + b - x2;f1 = f_x(x1);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==2x2 = a + 0.618*(b-a);f2 = f_x(x2);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)endif abs(b-a)<epxb = (a+b)/2;disp('最优解为:')fprintf('xb = %f, f(xb) = %f\n', xb, f_x(xb))disp('黄金分割法一维搜索完毕.')breakelseif f1<f2disp('f1<f2')b = x2;x2 = x1;f2 = f1;flag = 1;elseif f1==f2disp('f1=f2')a = x1;b = x2;flag = 0;elseif f1>f2disp('f1>f2')a = x1;x1 = x2;f1 = f2;flag = 2;endcnt = cnt + 1;
end
pause(0.5)
stem(xb, f_x(xb), 'r', 'linewidth', 2)

如果不想等待动画加载,ctrl+f, ctrl+r 把pause批量注释即可;
在这里插入图片描述

《最优化方法》教材上写成表的答案:

在这里插入图片描述

黄金分割法的一些性质

1、x1 = a+b-x2;
2、下一次迭代的区间长度是上一个区间长度的0.618倍;
3、如果f1<f2,则上一次迭代的x1, f1传给下一次迭代的x2, f2,
同理如果f1>f2,则上一次迭代的x2, f2传给下一次迭代的x1, f1;
4、迭代次数和求解精度取决于终止条件 ∣ b − a ∣ < ϵ |b-a|< \epsilon ba<ϵ ϵ \epsilon ϵ的大小。

这篇关于最优化方法——Matlab实现黄金分割法一维搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253167

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者