最优化方法——Matlab实现黄金分割法一维搜索

2023-10-21 08:30

本文主要是介绍最优化方法——Matlab实现黄金分割法一维搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 黄金分割法一维搜索原理
      • 算法流程:
    • Matlab代码
      • 命令行窗口结果打印:
        • 更换匿名函数:
      • 《最优化方法》教材上写成表的答案:
      • 黄金分割法的一些性质

黄金分割法一维搜索原理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
若保留区间为[x1,b],我们得到的结果是一致的.
该方法称为黄金分割法,实际计算取近似值: x1=a+0.382(b – a), x2=a+0.618(b – a),
所以黄金分割法又称为0.618法.
黄金分割法每次缩小区间的比例是一致的,每次将区间长度缩小到原来的0.618倍.

算法流程:

在这里插入图片描述
黄金分割法也称作0.618法,一维指的是只含有一个未知量的情况。

Matlab代码

用matlab实现黄金分割法求解f(x)=x^2-x+2在(-1,3)上的最小值:

clc,clear,close all;
a = -1; b =3;
ep = 0.08*(b-a);
x = a:0.1:b;
f_x = x.^2-x+2;
plot(x, f_x, 'linewidth', 1.5)
axis([-1, 3, 0, 8])
title('f(x)=x^2-x+2')
grid on;
flag = 0;
cnt = 0;
pause(0.5)
while 1fprintf('第%d次迭代:\n', cnt)if flag==0x2 = a + 0.618*(b-a);f2 = x2.^2-x2+2;x1 = a + b - x2;f1 = x1.^2-x1+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)hold onstem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==1x1 = a + b - x2;f1 = x1.^2-x1+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==2x2 = a + 0.618*(b-a);f2 = x2.^2-x2+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)endif abs(b-a)<epxb = (a+b)/2;disp('最优解为:')fprintf('xb = %f, f(xb) = %f\n', xb, xb.^2-xb+2)disp('黄金分割法一维搜索完毕.')breakelseif f1<f2disp('f1<f2')b = x2;x2 = x1;f2 = f1;flag = 1;elseif f1==f2disp('f1=f2')a = x1;b = x2;flag = 0;elseif f1>f2disp('f1>f2')a = x1;x1 = x2;f1 = f2;flag = 2;endcnt = cnt + 1;
end
pause(0.5)
stem(xb, xb^2-xb+2, 'r', 'linewidth', 2)

代码运行有动态效果,这里就不再保存为GIF动图了,可以复制一键运行尝试:
在这里插入图片描述

命令行窗口结果打印:

0次迭代:
a = -1.000000, b = 3.000000
x1 = 0.528000, x2 = 1.472000, f1 = 1.750784, f2 = 2.694784
f1<f2
第1次迭代:
a = -1.000000, b = 1.472000
x1 = -0.056000, x2 = 0.528000, f1 = 2.059136, f2 = 1.750784
f1>f2
第2次迭代:
a = -0.056000, b = 1.472000
x1 = 0.528000, x2 = 0.888304, f1 = 1.750784, f2 = 1.900780
f1<f2
第3次迭代:
a = -0.056000, b = 0.888304
x1 = 0.304304, x2 = 0.528000, f1 = 1.788297, f2 = 1.750784
f1>f2
第4次迭代:
a = 0.304304, b = 0.888304
x1 = 0.528000, x2 = 0.665216, f1 = 1.750784, f2 = 1.777296
f1<f2
第5次迭代:
a = 0.304304, b = 0.665216
x1 = 0.441520, x2 = 0.528000, f1 = 1.753420, f2 = 1.750784
f1>f2
第6次迭代:
a = 0.441520, b = 0.665216
x1 = 0.528000, x2 = 0.579764, f1 = 1.750784, f2 = 1.756362
最优解为:
xb = 0.553368, f(xb) = 1.752848
黄金分割法一维搜索完毕.
>> 
更换匿名函数:

通过更改目标函数 f_x ,对自定义的目标函数进行一维搜索的代码:

clc,clear,close all;
a = -1; b =3;
ep = 0.08*(b-a);
x = a:0.1:b;
f_x = @(x)x.^2-3*x+2;
plot(x, f_x(x), 'linewidth', 1.5)
axis tight
tl = func2str(f_x);
title(tl(5:end))
grid on;
flag = 0;
cnt = 0;
pause(0.5)
while 1fprintf('第%d次迭代:\n', cnt)if flag==0x2 = a + 0.618*(b-a);f2 = f_x(x2);x1 = a + b - x2;f1 = f_x(x1);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)hold onstem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==1x1 = a + b - x2;f1 = f_x(x1);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==2x2 = a + 0.618*(b-a);f2 = f_x(x2);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)endif abs(b-a)<epxb = (a+b)/2;disp('最优解为:')fprintf('xb = %f, f(xb) = %f\n', xb, f_x(xb))disp('黄金分割法一维搜索完毕.')breakelseif f1<f2disp('f1<f2')b = x2;x2 = x1;f2 = f1;flag = 1;elseif f1==f2disp('f1=f2')a = x1;b = x2;flag = 0;elseif f1>f2disp('f1>f2')a = x1;x1 = x2;f1 = f2;flag = 2;endcnt = cnt + 1;
end
pause(0.5)
stem(xb, f_x(xb), 'r', 'linewidth', 2)

如果不想等待动画加载,ctrl+f, ctrl+r 把pause批量注释即可;
在这里插入图片描述

《最优化方法》教材上写成表的答案:

在这里插入图片描述

黄金分割法的一些性质

1、x1 = a+b-x2;
2、下一次迭代的区间长度是上一个区间长度的0.618倍;
3、如果f1<f2,则上一次迭代的x1, f1传给下一次迭代的x2, f2,
同理如果f1>f2,则上一次迭代的x2, f2传给下一次迭代的x1, f1;
4、迭代次数和求解精度取决于终止条件 ∣ b − a ∣ < ϵ |b-a|< \epsilon ba<ϵ ϵ \epsilon ϵ的大小。

这篇关于最优化方法——Matlab实现黄金分割法一维搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253167

相关文章

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函