神经网络硬件加速器-DPU分析

2023-10-21 07:59

本文主要是介绍神经网络硬件加速器-DPU分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 DPU概述

       DPU是专为卷积神经网络优化的可编程引擎,其使用专用指令集,支持诸多卷积神经网络的有效实现。

 1、关键模块

  • 卷积引擎:常规CONV等
  • ALU:DepthwiseConv
  • Scheduler:指令调度分发
  • Buffer Group:片上数据缓存
  • Data Mover:高速数据通道

 2、特性

 3、工作流程

  • 阶段一:上电后,DPU将指令从外部DRAM加载到片上,译码并分发至各个模块;并根据指令通过DMA将相应权重和输入特征图加载至片上缓存
  • 阶段二:计算引擎根据调度算法将所需数据加载至计算阵列中,通过并行计算引擎完成计算任务
  • 阶段三:       一旦完成当。前层计算任务,则需要将输出特征图通过DMA写回片外DRAM,然后开启下一层计算任务。进而实现整个网络的逐层加速计算

二 设计分析

       DPU通过组合多种并行度来搭配多种卷积架构,DPU卷积架构包括三个维度的并行度:像素并行度/输入通道并行度/输出通道并行度(通常输入通道并行度=输出通道并行度)。

 1、并行度

  • 像素并行度:PP

  • 输入通道并行度:ICP

  • 输出通道并行度:OCP

 2、计算模式

数据排布格式猜测大致为:NHWC

计算模式:

  • 1 优先复用输入通道:计算卷积时每次将部分输入特征图从外部缓存读到FPGA片上缓存,卷积计算时优先复用输入特征图,计算尽可能多的输出通道结果,避免计算不同输出通道时多次加载这部分特征图。
  • 2 然后复用输出通道:基于1,每次计算尽可能多的计算输出通道,因片上缓存资源受限,通常无法一次计算玩所有输出通道,这里需要配合调度优先计算剩余的输出通道。
  • 3 采用输出复用方法:输出数据复用对输出缓存具有最少的访问次数,计算过程中,将累加的中间结果保存在片上,直到全部结果累加结束再存回片外。

 3、架构设计

DPU计算架构设计如下图红色方框部分

 CONV计算阵列:计算阵列包括P个PE,每个PE用于完成1个输出像素计算,P个PE完成P个并行像素的卷积计算;每个PE包含OCP个计算阵列,每个计算阵列包含ICP个MACs,分别完成输出通道并行/输出通道并行的卷积计算。

单个计算阵列中包含多个乘法器单元,加法树,非线性计算采用流水线方式设计,通过复制OCP个并行流水线,完成OCP并行度的输出通道卷积运算。也包含任意尺寸的池化、逐元素、尺寸变换、全连接等

 Memory POOL:缓存池根据相关专利,为统一缓存池,与传统的输入缓冲区-计算核阵列-输出缓存区结构不同,其采用统一的缓存池,多通道数据读写调度单元设计。DPU根据不同网络不同层的特点,动态申请、分配来使用相应的缓存空间,最大化利用片上缓存资源。

卷积计算单元和ALU可以脱离顺序执行的流水线限制而彼此独立,同时可以保证各计算单元的数据吞吐率,有效提升计算模块的灵活性和并行度。

 4、指令集

DPU采用多指令多数据流架构,包含指令类型如下:

  • LOAD:数据加载
  • SAVE:数据缓存
  • CONV:卷积计算,包括常规卷积/转置卷积等
  • MISC:逐通道卷积等

具有以下特点:

  • 不同类别指令并行执行
  • 相同类别指令串行执行
  • 不同类别指令间存在相互依赖
  • 依赖关系不应存在死锁

指令优化:

  • 将访存和计算并行,提高计算单元利用率
  • 通过调整tile策略和大小,优化系统访存

指令字段包括:操作码(区分不同指令类型)、依赖码(不同类型指令集安存在并行可能性)、指令参数(具体指令功能描述)

待补充。。。

三 参考文献

[1] 深鉴相关专利

[2] 清华大学NICS-EFC组相关paper

[3]XILINX DPU相关datasheet

这篇关于神经网络硬件加速器-DPU分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253033

相关文章

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

高度内卷下,企业如何通过VOC(客户之声)做好竞争分析?

VOC,即客户之声,是一种通过收集和分析客户反馈、需求和期望,来洞察市场趋势和竞争对手动态的方法。在高度内卷的市场环境下,VOC不仅能够帮助企业了解客户的真实需求,还能为企业提供宝贵的竞争情报,助力企业在竞争中占据有利地位。 那么,企业该如何通过VOC(客户之声)做好竞争分析呢?深圳天行健企业管理咨询公司解析如下: 首先,要建立完善的VOC收集机制。这包括通过线上渠道(如社交媒体、官网留言

神经网络第四篇:推理处理之手写数字识别

到目前为止,我们已经介绍完了神经网络的基本结构,现在用一个图像识别示例对前面的知识作整体的总结。本专题知识点如下: MNIST数据集图像数据转图像神经网络的推理处理批处理  MNIST数据集          mnist数据图像 MNIST数据集由0到9的数字图像构成。像素取值在0到255之间。每个图像数据都相应地标有“7”、“2”、“1”等数字标签。MNIST数据集中,

神经网络第三篇:输出层及softmax函数

在上一篇专题中,我们以三层神经网络的实现为例,介绍了如何利用Python和Numpy编程实现神经网络的计算。其中,中间(隐藏)层和输出层的激活函数分别选择了 sigmoid函数和恒等函数。此刻,我们心中不难发问:为什么要花一个专题来介绍输出层及其激活函数?它和中间层又有什么区别?softmax函数何来何去?下面我们带着这些疑问进入本专题的知识点: 1 输出层概述 2 回归问题及恒等函数 3

神经网络第一篇:激活函数是连接感知机和神经网络的桥梁

前面发布的文章介绍了感知机,了解了感知机可以通过叠加层表示复杂的函数。遗憾的是,设定合适的、能符合预期的输入与输出的权重,是由人工进行的。从本章开始,将进入神经网络的学习,首先介绍激活函数,因为它是连接感知机和神经网络的桥梁。如果读者认知阅读了本专题知识,相信你必有收获。 感知机数学表达式的简化 前面我们介绍了用感知机接收两个输入信号的数学表示如下:

多层感知机不等于神经网络?

在前一章节(https://blog.csdn.net/u012132349/article/details/86166324),我们介绍了感知机可以实现与门、或门、非门。只需给定合适的参数(w1, w2, b)并利用Python就可以简单实现对输入的任意(x1,x2),输出0或1。     今天我们将介绍感知机的局限性(严格说是单层感知机的局限性)。这里我们想用感知机实现异或门,所谓异

打包体积分析和优化

webpack分析工具:webpack-bundle-analyzer 1. 通过<script src="./vue.js"></script>方式引入vue、vuex、vue-router等包(CDN) // webpack.config.jsif(process.env.NODE_ENV==='production') {module.exports = {devtool: 'none