神经网络硬件加速器-DPU分析

2023-10-21 07:59

本文主要是介绍神经网络硬件加速器-DPU分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 DPU概述

       DPU是专为卷积神经网络优化的可编程引擎,其使用专用指令集,支持诸多卷积神经网络的有效实现。

 1、关键模块

  • 卷积引擎:常规CONV等
  • ALU:DepthwiseConv
  • Scheduler:指令调度分发
  • Buffer Group:片上数据缓存
  • Data Mover:高速数据通道

 2、特性

 3、工作流程

  • 阶段一:上电后,DPU将指令从外部DRAM加载到片上,译码并分发至各个模块;并根据指令通过DMA将相应权重和输入特征图加载至片上缓存
  • 阶段二:计算引擎根据调度算法将所需数据加载至计算阵列中,通过并行计算引擎完成计算任务
  • 阶段三:       一旦完成当。前层计算任务,则需要将输出特征图通过DMA写回片外DRAM,然后开启下一层计算任务。进而实现整个网络的逐层加速计算

二 设计分析

       DPU通过组合多种并行度来搭配多种卷积架构,DPU卷积架构包括三个维度的并行度:像素并行度/输入通道并行度/输出通道并行度(通常输入通道并行度=输出通道并行度)。

 1、并行度

  • 像素并行度:PP

  • 输入通道并行度:ICP

  • 输出通道并行度:OCP

 2、计算模式

数据排布格式猜测大致为:NHWC

计算模式:

  • 1 优先复用输入通道:计算卷积时每次将部分输入特征图从外部缓存读到FPGA片上缓存,卷积计算时优先复用输入特征图,计算尽可能多的输出通道结果,避免计算不同输出通道时多次加载这部分特征图。
  • 2 然后复用输出通道:基于1,每次计算尽可能多的计算输出通道,因片上缓存资源受限,通常无法一次计算玩所有输出通道,这里需要配合调度优先计算剩余的输出通道。
  • 3 采用输出复用方法:输出数据复用对输出缓存具有最少的访问次数,计算过程中,将累加的中间结果保存在片上,直到全部结果累加结束再存回片外。

 3、架构设计

DPU计算架构设计如下图红色方框部分

 CONV计算阵列:计算阵列包括P个PE,每个PE用于完成1个输出像素计算,P个PE完成P个并行像素的卷积计算;每个PE包含OCP个计算阵列,每个计算阵列包含ICP个MACs,分别完成输出通道并行/输出通道并行的卷积计算。

单个计算阵列中包含多个乘法器单元,加法树,非线性计算采用流水线方式设计,通过复制OCP个并行流水线,完成OCP并行度的输出通道卷积运算。也包含任意尺寸的池化、逐元素、尺寸变换、全连接等

 Memory POOL:缓存池根据相关专利,为统一缓存池,与传统的输入缓冲区-计算核阵列-输出缓存区结构不同,其采用统一的缓存池,多通道数据读写调度单元设计。DPU根据不同网络不同层的特点,动态申请、分配来使用相应的缓存空间,最大化利用片上缓存资源。

卷积计算单元和ALU可以脱离顺序执行的流水线限制而彼此独立,同时可以保证各计算单元的数据吞吐率,有效提升计算模块的灵活性和并行度。

 4、指令集

DPU采用多指令多数据流架构,包含指令类型如下:

  • LOAD:数据加载
  • SAVE:数据缓存
  • CONV:卷积计算,包括常规卷积/转置卷积等
  • MISC:逐通道卷积等

具有以下特点:

  • 不同类别指令并行执行
  • 相同类别指令串行执行
  • 不同类别指令间存在相互依赖
  • 依赖关系不应存在死锁

指令优化:

  • 将访存和计算并行,提高计算单元利用率
  • 通过调整tile策略和大小,优化系统访存

指令字段包括:操作码(区分不同指令类型)、依赖码(不同类型指令集安存在并行可能性)、指令参数(具体指令功能描述)

待补充。。。

三 参考文献

[1] 深鉴相关专利

[2] 清华大学NICS-EFC组相关paper

[3]XILINX DPU相关datasheet

这篇关于神经网络硬件加速器-DPU分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253033

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专