人工智能可以做点什么?唐山事件的视频AI识别检测项目 <附代码与动图> | 万物AI

本文主要是介绍人工智能可以做点什么?唐山事件的视频AI识别检测项目 <附代码与动图> | 万物AI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作者:韩信子@ShowMeAI
  • 声明:版权所有,转载请联系平台与作者并注明出处

在公众号 ShowMeAI研究中心 回复「唐山」,获取 项目代码 & 用于训练的视频 & 运行结果视频/动图。项目涉及知识点见文末推荐阅读

6月10日凌晨,河北唐山一烧烤店,发生多名男子殴打他人的刑事案件。唐山事件及后续网络实名举报案件,引发了全网的关注与热议,相关话题登上各大网站热搜榜。据报道,唐山市开展为期半个月的夏季社会治安整治「雷霆风暴」专项行动,全面整治社会治安领域突出问题。

安全感来自于对一个个具体案件的处置。希望当地司法机构持续发力,让敢于以身试法者受到严惩,让包括女性在内的广大群众感受到公平正义,对社会安全度有着更强的信赖感。我们也借这个机会讨论下,在推进社会安全的过程中,人工智能技术有哪些应用场景,可以做出怎样的贡献

社区安全与智能化管理

社区是城市的关键组成部分,社区治理是围绕社区场景下的人、地、物、情、事的管理与服务。社区安全与智慧城市是大家一直在提的主题。让我们回到技术层面,AI能否在其中发挥作用?形如「唐山事件」的危害行为,是否可以第一时间被AI识别到并进行响应呢?

可以。使用摄像头记录下来的信息,AI与计算机视觉自动化可以快速响应并发挥作用

事实上,随着城市化的快速推进及人口流动的快速增加,传统社区治理在人员出入管控、安防巡逻、车辆停放管理等典型场景下都面临着人力不足、效率低下、响应不及时等诸多难题。而人工智能技术代替人力,实现人、车、事的精准治理,大幅降低人力、物质、时间等成本,以最低成本发挥最强大的管理效能,有效推动城市治理向更「数字化、自动化、智慧化」的方向演进。

我们下面借助于百度 paddlepaddle 针对智慧社区的实时行人分析工具 PP-Human 做一个介绍,底层的深度学习算法,基于行人检测与跟踪技术,实现26种人体属性分析以及摔倒等异常行为识别,可以在未来这样的类似场景下发挥作用,提供多一份保障。

部分社区智能化应用效果

1)社区人员信息识别

传统社区视频监控80%都依靠人工实现,随着摄像头在社区中的大规模普及,日超千兆的视频图像数据、人员信息的日渐繁杂已远超人工的负荷。

深度学习算法中的人体跟踪和属性识别功能可以实现社区视频监控的结构化理解,实时识别进出小区的人员的性别、年龄、衣着打扮等多种属性并记录其运动轨迹,应用AI 算法代替人力进行社区管理,具备更高的效率、及时性和更好的准确度,针对出入口管理、快速寻人、轨迹分析等都可以快速响应。

下图为上海天覆科技的街道人员属性识别应用案例:

2)行为及异常行为检测

社区的安全防护是重中之重,我们希望AI可以高效保障社区居民人身安全。传统的方法主要依靠人工视频监控,配以人力巡逻,有时会有异常情况响应不及时的问题,对人力消耗也非常大,比如这次的「唐山事件」。

如果应用 关键点+时空图卷积网络 ****的技术,可以很快地对伤者摔倒及打架暴力事件进行检测,加快报警与救援,提升社区安防系统智能化。

如下为办公区域摔倒检测的示例:

手把手AI代码:社区智能化组件应用于「唐山事件」

下面应用jupyter notebook对本次「唐山事件」的视频进行AI识别检测。

1)环境配置

我们借助于百度paddlepaddle针智慧社区的实时行人分析工具 PP-Human完成后续检测功能,如下为 PP-Human 的技术全景图。

本次应用依赖百度 PaddleDetection 工具库,要求版本 >= release/2.4,我们在 jupyter notebook 中新建一个cell,并克隆 PaddleDetection 仓库到本地。

 # 克隆PaddleDetection仓库到本地
!git clone https://github.com/PaddlePaddle/PaddleDetection.git

下面我们切换到 PaddleDetection 目录下(注意在 jupyter notebook 中通过%cd魔法命令完成路径切换),并根据 requirements.txt 中的要求去安装依赖的工具库,具体的操作代码如下:

 # 安装其他依赖
%cd PaddleDetection
!pip install -r requirements.txt

依赖安装完成后我们编译安装 PaddleDetection,命令如下

# 编译安装paddledet
!python setup.py install

2)预训练模型下载

我们在社区智能化场景下,不同的任务其实由不同的计算机视觉底层应用支撑,比如社区人员信息留存涉及「目标检测」和「属性识别」等视觉任务应用;摔倒及异常(暴力打架等)识别涉及「目标检测」、「关键点检测」、「行为识别」等视觉任务应用。

这些任务应用已经有成型的预训练模型可以直接下载和加载应用(当然我们也可以在自己的社区场景下采集更匹配的真实数据,标注后对预训练模型进行调优),我们在这里直接下载可用的预训练模型。

其中,模型能进行的属性分析包含26种不同属性,具体如下:

- 性别:男、女
- 年龄:小于1818-60、大于60
- 朝向:朝前、朝后、侧面
- 配饰:眼镜、帽子、无
- 正面持物:是、否
- 包:双肩包、单肩包、手提包
- 上衣风格:带条纹、带logo、带格子、拼接风格
- 下装风格:带条纹、带图案
- 短袖上衣:是、否
- 长袖上衣:是、否
- 长外套:是、否
- 长裤:是、否
- 短裤:是、否
- 短裙&裙子:是、否
- 穿靴:是、否

行为识别主要支持摔倒检测,也对打架、抽烟、玩手机、睡觉等行为进行了检测。

下载预训练模型的代码如下(注意请在 jupyter notebook 的 cell 中运行):

 #下载目标检测模型
!wget https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip
#下载属性识别模型
!wget https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip
#下载关键点识别模型
!wget https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip
#下载行为识别模型
!wget https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip

接着我们把下载好的模型压缩包文件解压缩到 output_inference文件夹

 #解压至./output_inference文件夹
!unzip -d output_inference mot_ppyoloe_l_36e_pipeline.zip
!unzip -d output_inference strongbaseline_r50_30e_pa100k.zip
!unzip -d output_inference dark_hrnet_w32_256x192.zip
!unzip -d output_inference STGCN.zip

3)配置文件说明

此次应用的paddle应用,相关配置位于deploy/pphuman/config/infer_cfg.yml文件中。

对应的任务类型和功能如下表所示:

输入类型功能任务类型配置项
图片属性识别目标检测 属性识别DET ATTR
单镜头视频属性识别多目标跟踪 属性识别MOT ATTR
单镜头视频行为识别多目标跟踪 关键点检测 行为识别MOT KPT ACTION

我们本次应用,主要包含下述功能:

  • 社区人员信息留存:单镜头视频的属性识别
  • 摔倒及异常动作检测:单镜头视频输入的摔倒/动作识别

大家可以根据视频长短调整部分参数,比如动作识别中可以将 deploy/pphuman/config/infer_cfg.yml 文件中的 max_frames 和 display_frames 修改如下:

ACTION:model_dir: output_inference/STGCNbatch_size: 1max_frames: 2500display_frames: 2500coord_size: [384, 512]

4)模型运行与预测

模型预测参数选择分为两部分:

  • 功能选择:将对应参数设置为 True
    • 属性识别:enable_attr
    • 行为识别:enable_action
  • 模型路径修改:设置对应任务 (DET, MOT, ATTR, KPT, ACTION) 的模型路径
    • 例如 图片输入的属性识别:
--model_dir det=output_inference/mot_ppyoloe_l_36e_pipeline/ attr=output_inference/strongbaseline_r50_30e_pa100k/
社区人员信息识别

如下运行代码,其中「唐山.mp4」为事件片段视频,可以在公众号 ShowMeAI研究中心 回复「唐山」获取 网盘地址

 #视频行人属性识别
!python deploy/pphuman/pipeline.py \--config deploy/pphuman/config/infer_cfg.yml \--model_dir mot=output_inference/mot_ppyoloe_l_36e_pipeline/ attr=output_inference/strongbaseline_r50_30e_pa100k/ \--video_file=../唐山.mp4 \--enable_attr=True \--device=gpu

截取的识别结果可视化如下所示:


摔倒与异常行为检测

如下运行代码,其中「tangshan.mp4」为事件片段视频,可以在公众号 ShowMeAI研究中心 回复「唐山」获取 网盘地址

#摔倒与异常行为检测识别
!python deploy/pphuman/pipeline.py \--config deploy/pphuman/config/infer_cfg.yml \--model_dir mot=output_inference/mot_ppyoloe_l_36e_pipeline/ kpt=output_inference/dark_hrnet_w32_256x192/ action=output_inference/STGCN \--video_file=/home/aistudio/tangshan.mp4 \--enable_action=True \--device=cpu

推荐阅读

关于社区安全检测涉及的视觉模型算法知识,请关注ShowMeAI的后续文章,我们将展开讲解。也推荐大家学习ShowMeAI精心创作的系列教程。

图解机器学习算法:从入门到精通系列教程

链接:http://www.showmeai.tech/tutorials/34

机器学习实战:手把手教你玩转机器学习系列

链接:http://www.showmeai.tech/tutorials/41

深度学习教程:吴恩达专项课程 · 全套笔记解读

链接:http://www.showmeai.tech/tutorials/35

自然语言处理教程:斯坦福CS224n课程 · 课程带学与全套笔记解读

链接:http://www.showmeai.tech/tutorials/36

深度学习与计算机视觉教程:斯坦福CS231n · 全套笔记解读

链接:http://www.showmeai.tech/tutorials/37

在公众号 ShowMeAI研究中心 回复「唐山」,获取 项目代码 & 用于训练的视频 & 运行结果视频/动图。项目涉及知识点见文末推荐阅读

这篇关于人工智能可以做点什么?唐山事件的视频AI识别检测项目 <附代码与动图> | 万物AI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252813

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

禁止平板,iPad长按弹出默认菜单事件

通过监控按下抬起时间差来禁止弹出事件,把以下代码写在要禁止的页面的页面加载事件里面即可     var date;document.addEventListener('touchstart', event => {date = new Date().getTime();});document.addEventListener('touchend', event => {if (new

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G