bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】

2023-10-21 05:40

本文主要是介绍bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主。NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫。
作为NLP的主要方向,情感分析,文本多分类,实体识别等已经在项目中得到应用。例如
通过实体识别,抽取文本中提及到的公司、个人以及金融产品等。
通过情感分析,判别新闻资讯,对其提到的公司和个人是否利好?
通过文本多分类,判断资讯是否是高质量?判断资讯的行业和主题?
具体详情再找时间分享。而文本生成、序列到序列(Sequence to Sequence)在机器翻译、问答系统、聊天机器人中有较广的应用,在参与的项目中暂无涉及,本文主要通过tensorflow+bert+seq2seq实现一个简单的问答模型,旨在对seq2seq的了解和熟悉。

数据

关于seq2seq的demo数据有很多,例如小黄鸡聊天语料库,影视语料库,翻译语料库等等。由于最近总是做些奇怪的梦,便想着,做一个AI解梦的应用玩玩,just for fun。
通过采集从网上采集周公解梦数据,通过清洗,形成
dream:梦境;
decode:梦境解析结果。
这样的序列对,总计33000+ 条记录。数据集下载地址:后台回复“解梦”
{
"dream": "梦见商人或富翁",
"decode": "是个幸运的预兆,未来自己的事业很有机会成功,不过如果梦中的富翁是自己,则是一个凶兆。。"
}

模型准备

#下载 bert
$ git clone https://github.com/google-research/bert.git
#下载中文预训练模型
$ wget -c https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
$ unzip chinese_L-12_H-768_A-12.zip 

bert 的input:

self.input_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_ids"
)
self.input_mask = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_mask"
)
self.segment_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="segment_ids"
)
self.dropout = tf.placeholder(dtype=tf.float32,shape=None,name="dropout"
)

bert 的model :

self.bert_config = modeling.BertConfig.from_json_file(bert_config)model = modeling.BertModel(config=self.bert_config,is_training=self.is_training,input_ids=self.input_ids,input_mask=self.input_mask,token_type_ids=self.segment_ids,use_one_hot_embeddings=False)

seq2seq 的encoder_embedding 替换:

# 默认seq2seq model_inputs
# self.encoder_embedding = tf.Variable(tf.random_uniform([from_dict_size, embedded_size], -1, 1),name ="encoder_embedding")
# self.model_inputs = tf.nn.embedding_lookup(self.encoder_embedding, self.X),
#  替换成bert
self.embedded = model.get_sequence_output()
self.model_inputs = tf.nn.dropout(self.embedded, self.dropout)

seq2seq 的decoder_embedding 替换:

# 默认seq2seq decoder_embedding
# self.decoder_embedding = tf.Variable(tf.random_uniform([to_dict_size, embedded_size], -1, 1),name="decoder_embedding")
#  替换成bert
self.decoder_embedding = model.get_embedding_table()
self.decoder_input = tf.nn.embedding_lookup(self.decoder_embedding, decoder_input),

数据预处理

for i in range(len(inputs)):tokens = inputs[i]inputs_ids = model.tokenizer.convert_tokens_to_ids(inputs[i])segment_ids = [0] * len(inputs_ids)input_mask = [1] * len(inputs_ids)tag_ids = model.tokenizer.convert_tokens_to_ids(outputs[i])data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])def pad_data(data):c_data = copy.deepcopy(data)max_x_length = max([len(i[0]) for i in c_data])max_y_length = max([len(i[1]) for i in c_data]) # 这里生成的序列的tag-id 和 input-id 长度要分开# print("max_x_length : {} ,max_y_length : {}".format( max_x_length,max_y_length))padded_data = []for i in c_data:tokens, tag_ids, inputs_ids, segment_ids, input_mask = itag_ids = tag_ids + (max_y_length - len(tag_ids)) * [0]# 注意tag-ids 的长度补充,和预测的序列长度一致。inputs_ids = inputs_ids + (max_x_length - len(inputs_ids)) * [0]segment_ids = segment_ids + (max_x_length - len(segment_ids)) * [0]input_mask = input_mask + (max_x_length - len(input_mask)) * [0]assert len(inputs_ids) == len(segment_ids) == len(input_mask)padded_data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])return padded_data

训练

$ python3 model.py --task=train \--is_training=True \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

预测

$ python3 model.py --task=predict \--is_training=False \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

Just For Fun ^_^

本文代码: https://github.com/saiwaiyanyu/tensorflow-bert-seq2seq-dream-decoder

作者:saiwaiyanyu
链接:https://juejin.im/post/5dd9e07b51882572f00c4523
来源:掘金

8

本文由博客一文多发平台 OpenWrite 发布!

这篇关于bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252320

相关文章

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC