bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】

2023-10-21 05:40

本文主要是介绍bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主。NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫。
作为NLP的主要方向,情感分析,文本多分类,实体识别等已经在项目中得到应用。例如
通过实体识别,抽取文本中提及到的公司、个人以及金融产品等。
通过情感分析,判别新闻资讯,对其提到的公司和个人是否利好?
通过文本多分类,判断资讯是否是高质量?判断资讯的行业和主题?
具体详情再找时间分享。而文本生成、序列到序列(Sequence to Sequence)在机器翻译、问答系统、聊天机器人中有较广的应用,在参与的项目中暂无涉及,本文主要通过tensorflow+bert+seq2seq实现一个简单的问答模型,旨在对seq2seq的了解和熟悉。

数据

关于seq2seq的demo数据有很多,例如小黄鸡聊天语料库,影视语料库,翻译语料库等等。由于最近总是做些奇怪的梦,便想着,做一个AI解梦的应用玩玩,just for fun。
通过采集从网上采集周公解梦数据,通过清洗,形成
dream:梦境;
decode:梦境解析结果。
这样的序列对,总计33000+ 条记录。数据集下载地址:后台回复“解梦”
{
"dream": "梦见商人或富翁",
"decode": "是个幸运的预兆,未来自己的事业很有机会成功,不过如果梦中的富翁是自己,则是一个凶兆。。"
}

模型准备

#下载 bert
$ git clone https://github.com/google-research/bert.git
#下载中文预训练模型
$ wget -c https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
$ unzip chinese_L-12_H-768_A-12.zip 

bert 的input:

self.input_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_ids"
)
self.input_mask = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_mask"
)
self.segment_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="segment_ids"
)
self.dropout = tf.placeholder(dtype=tf.float32,shape=None,name="dropout"
)

bert 的model :

self.bert_config = modeling.BertConfig.from_json_file(bert_config)model = modeling.BertModel(config=self.bert_config,is_training=self.is_training,input_ids=self.input_ids,input_mask=self.input_mask,token_type_ids=self.segment_ids,use_one_hot_embeddings=False)

seq2seq 的encoder_embedding 替换:

# 默认seq2seq model_inputs
# self.encoder_embedding = tf.Variable(tf.random_uniform([from_dict_size, embedded_size], -1, 1),name ="encoder_embedding")
# self.model_inputs = tf.nn.embedding_lookup(self.encoder_embedding, self.X),
#  替换成bert
self.embedded = model.get_sequence_output()
self.model_inputs = tf.nn.dropout(self.embedded, self.dropout)

seq2seq 的decoder_embedding 替换:

# 默认seq2seq decoder_embedding
# self.decoder_embedding = tf.Variable(tf.random_uniform([to_dict_size, embedded_size], -1, 1),name="decoder_embedding")
#  替换成bert
self.decoder_embedding = model.get_embedding_table()
self.decoder_input = tf.nn.embedding_lookup(self.decoder_embedding, decoder_input),

数据预处理

for i in range(len(inputs)):tokens = inputs[i]inputs_ids = model.tokenizer.convert_tokens_to_ids(inputs[i])segment_ids = [0] * len(inputs_ids)input_mask = [1] * len(inputs_ids)tag_ids = model.tokenizer.convert_tokens_to_ids(outputs[i])data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])def pad_data(data):c_data = copy.deepcopy(data)max_x_length = max([len(i[0]) for i in c_data])max_y_length = max([len(i[1]) for i in c_data]) # 这里生成的序列的tag-id 和 input-id 长度要分开# print("max_x_length : {} ,max_y_length : {}".format( max_x_length,max_y_length))padded_data = []for i in c_data:tokens, tag_ids, inputs_ids, segment_ids, input_mask = itag_ids = tag_ids + (max_y_length - len(tag_ids)) * [0]# 注意tag-ids 的长度补充,和预测的序列长度一致。inputs_ids = inputs_ids + (max_x_length - len(inputs_ids)) * [0]segment_ids = segment_ids + (max_x_length - len(segment_ids)) * [0]input_mask = input_mask + (max_x_length - len(input_mask)) * [0]assert len(inputs_ids) == len(segment_ids) == len(input_mask)padded_data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])return padded_data

训练

$ python3 model.py --task=train \--is_training=True \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

预测

$ python3 model.py --task=predict \--is_training=False \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

Just For Fun ^_^

本文代码: https://github.com/saiwaiyanyu/tensorflow-bert-seq2seq-dream-decoder

作者:saiwaiyanyu
链接:https://juejin.im/post/5dd9e07b51882572f00c4523
来源:掘金

8

本文由博客一文多发平台 OpenWrite 发布!

这篇关于bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252320

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确