如何使用迭代最近点(How to use iterative closest point)

2023-10-20 19:39

本文主要是介绍如何使用迭代最近点(How to use iterative closest point),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#如何使用迭代最近点
本文档演示如何在代码中使用迭代最接近点算法,通过最小化两个点云之间的距离并严格转换它们,可以确定一个PointCloud是否只是另一个PointCloud的刚性转换。

#代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>int
main (int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);// Fill in the CloudIn datacloud_in->width    = 5;cloud_in->height  = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << "    " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;return (0);
}

#说明
现在,让我们逐个分解这个代码。

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>

这些头文件包含我们将使用的所有类的定义。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);

创建两个pcl::PointCloud<pcl::PointXYZ> boost shared pointers并初始化它们。每个点的类型在pcl命名空间中设置为PointXYZ,即:

// \brief A point structure representing Euclidean xyz coordinates.
struct PointXYZ
{float x;float y;float z;
};

The lines:

  // Fill in the CloudIn datacloud_in->width    = 5;cloud_in->height  = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;

用随机点值填充PointCloud结构,并设置合适的参数(宽度,高度,is_dense)。此外,他们输出保存的点数,以及它们的实际数据值。

然后:

  for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << "    " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;

对点云执行简单的刚性变换并再次输出数据值。

  pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);

这将创建一个IterativeClosestPoint的实例并为其提供一些有用的信息。“icp.setInputCloud(cloud_in);”将cloud_in设置为PointCloud开始,“icp.setInputTarget(cloud_out);which we want cloud_in to look like.

接下来,

  pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;

创建一个pcl::PointCloud<pcl::PointXYZ>,IterativeClosestPoint可以在应用该算法后将其保存到生成的云中。如果两个PointCloud正确对齐(意味着它们都是同一个云,而且只是某种刚性转换应用于其中一个云),则icp.hasConverged() = 1 (true)。It then outputs the fitness score of the final transformation and some information about it.

#编译和运行程序
将以下行添加到您的CMakeLists.txt文件中:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(iterative_closest_point)find_package(PCL 1.2 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (iterative_closest_point iterative_closest_point.cpp)
target_link_libraries (iterative_closest_point ${PCL_LIBRARIES})

After you have made the executable, you can run it. Simply do:

./iterative_closest_point

You will see something similar to:

Saved 5 data points to input:
0.352222 -0.151883 -0.106395
-0.397406 -0.473106 0.292602
-0.731898 0.667105 0.441304
-0.734766 0.854581 -0.0361733
-0.4607 -0.277468 -0.916762
size:5
Transformed 5 data points:
1.05222 -0.151883 -0.106395
0.302594 -0.473106 0.292602
-0.0318983 0.667105 0.441304
-0.0347655 0.854581 -0.03617330.2393 -0.277468 -0.916762
[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample
selection distance threshold of: 0.200928
[pcl::IterativeClosestPoint::computeTransformation] Number of
correspondences 4 [80.000000%] out of 5 points [100.0%], RANSAC rejected:
1 [20.000000%].
[pcl::IterativeClosestPoint::computeTransformation] Convergence reached.
Number of iterations: 1 out of 0. Transformation difference: 0.700001
has converged:1 score: 1.95122e-141  4.47035e-08 -3.25963e-09          0.7
2.98023e-08            1 -1.08499e-07 -2.98023e-08
1.30385e-08 -1.67638e-08            1  1.86265e-080            0            0            1

How to use iterative closest point

这篇关于如何使用迭代最近点(How to use iterative closest point)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249293

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构