如何使用迭代最近点(How to use iterative closest point)

2023-10-20 19:39

本文主要是介绍如何使用迭代最近点(How to use iterative closest point),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#如何使用迭代最近点
本文档演示如何在代码中使用迭代最接近点算法,通过最小化两个点云之间的距离并严格转换它们,可以确定一个PointCloud是否只是另一个PointCloud的刚性转换。

#代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>int
main (int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);// Fill in the CloudIn datacloud_in->width    = 5;cloud_in->height  = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << "    " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;return (0);
}

#说明
现在,让我们逐个分解这个代码。

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>

这些头文件包含我们将使用的所有类的定义。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);

创建两个pcl::PointCloud<pcl::PointXYZ> boost shared pointers并初始化它们。每个点的类型在pcl命名空间中设置为PointXYZ,即:

// \brief A point structure representing Euclidean xyz coordinates.
struct PointXYZ
{float x;float y;float z;
};

The lines:

  // Fill in the CloudIn datacloud_in->width    = 5;cloud_in->height  = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;

用随机点值填充PointCloud结构,并设置合适的参数(宽度,高度,is_dense)。此外,他们输出保存的点数,以及它们的实际数据值。

然后:

  for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << "    " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;

对点云执行简单的刚性变换并再次输出数据值。

  pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);

这将创建一个IterativeClosestPoint的实例并为其提供一些有用的信息。“icp.setInputCloud(cloud_in);”将cloud_in设置为PointCloud开始,“icp.setInputTarget(cloud_out);which we want cloud_in to look like.

接下来,

  pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;

创建一个pcl::PointCloud<pcl::PointXYZ>,IterativeClosestPoint可以在应用该算法后将其保存到生成的云中。如果两个PointCloud正确对齐(意味着它们都是同一个云,而且只是某种刚性转换应用于其中一个云),则icp.hasConverged() = 1 (true)。It then outputs the fitness score of the final transformation and some information about it.

#编译和运行程序
将以下行添加到您的CMakeLists.txt文件中:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(iterative_closest_point)find_package(PCL 1.2 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (iterative_closest_point iterative_closest_point.cpp)
target_link_libraries (iterative_closest_point ${PCL_LIBRARIES})

After you have made the executable, you can run it. Simply do:

./iterative_closest_point

You will see something similar to:

Saved 5 data points to input:
0.352222 -0.151883 -0.106395
-0.397406 -0.473106 0.292602
-0.731898 0.667105 0.441304
-0.734766 0.854581 -0.0361733
-0.4607 -0.277468 -0.916762
size:5
Transformed 5 data points:
1.05222 -0.151883 -0.106395
0.302594 -0.473106 0.292602
-0.0318983 0.667105 0.441304
-0.0347655 0.854581 -0.03617330.2393 -0.277468 -0.916762
[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample
selection distance threshold of: 0.200928
[pcl::IterativeClosestPoint::computeTransformation] Number of
correspondences 4 [80.000000%] out of 5 points [100.0%], RANSAC rejected:
1 [20.000000%].
[pcl::IterativeClosestPoint::computeTransformation] Convergence reached.
Number of iterations: 1 out of 0. Transformation difference: 0.700001
has converged:1 score: 1.95122e-141  4.47035e-08 -3.25963e-09          0.7
2.98023e-08            1 -1.08499e-07 -2.98023e-08
1.30385e-08 -1.67638e-08            1  1.86265e-080            0            0            1

How to use iterative closest point

这篇关于如何使用迭代最近点(How to use iterative closest point)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249293

相关文章

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当