《数学基础》-4.凸优化-4.1.无约束优化

2023-10-20 19:32

本文主要是介绍《数学基础》-4.凸优化-4.1.无约束优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4.1.无约束优化

4.1.1.无约束优化问题

无约束优化问题是机器学习中最普遍、最简单的优化问题。

求最大值也可以 在前面加上负号,变成上面求最小的形式。

求一个函数f(x)的最小值可以对函数f(x)求导并使其等于0(或者说使得梯度▽f(x)等于0),但是很多复杂的函数求导后没法求出解,所以这种方法实际上很少用。

常用梯度下降法、牛顿法或者拟牛顿法求解。

4.1.2.梯度下降法

基于迭代的方法,从某个点开始找很多点,使得这些点满足:,且有,这里表示单位梯度,经常写作,λ表示步长,所以通项是:

实际上λ也不会取很大,一般是

其过程为:

  

梯度下降法的种类:

①批量梯度下降法(BGD)

更新系数时,所有样本都参与计算

优点:需要个很少的迭代次数就可以收敛

缺点:当样本量很大时,更新一次的时间很长

②随机梯度下降法(SGD)

更新系数时,从n个样本中随机选择一个样本参与计算,

优点:更新一次的时间很短,所以大样本时有优势

缺点:会受到每一个样本的影响会很大,不稳定,需要更多的迭代次数才能收敛

③小批量梯度下降法(MBGD)

结合了批量梯度下降法和随机梯度下降法,选择一小部分样本参与计算

例如:

所有的样本都算完,就是一个epoch

4.1.3.牛顿法

求一个函数的最小值可以对函数求导并使其等于0(或者说使得梯度等于0):,把函数的导数看做一个函数,令

牛顿法求的过程也是迭代过程

假设的函数曲线是这个样子,要找到那个的点,先做某个的切线,然后找到切线与x轴相交的点然后再做的切线,以此类推,不断逼近的点。

先来求第一条切线的方程:

令y=0(就是上图中的点)得:

再把带入得:

这是二维的情况,如果是多维的情况:

其中H是海森矩阵,除以海森矩阵就是乘以它的逆矩阵。

为什么这里是海森矩阵?因为的n维向量,是n维向量,二次求导就是海森矩阵。

在机器学习中,要算海森矩阵的逆矩阵很麻烦,于是就引申出了很多种拟牛顿法BFGS(用另外一个矩阵来逼近海森矩阵的逆矩阵)。

 

牛顿法收敛速度

按这个迭代原理,就应该是函数的局部最优点,也就是有最小值,且有要弄明白这个收敛速度,就是要比较下的距离和的距离的区别,由上述结论得:

由于,所以分子加上得:

根据中值定理f(b)−f(a)=(b−a)f′(ξ),a<ξ<b,得:

再利用拉格朗日中值定理得:

ξ是在之间的,所以

由于M的分子分母都是导数,导数都是有界的,所以M是有界的,用表示其上界。

即:

的距离小于1:,则,这里是按照平方的速度进行收敛的,收敛速度更快,注意这里有条件:x的距离小于1,如果距离大于1,上界会越来越大,没法收敛。

 

综上,牛顿法要拟合,不能离最小值太远的地方拟合,越接近极小值再拟合收敛的效果越好。因此可以先用梯度下降,到了局部极小值附近后再用牛顿法。

这篇关于《数学基础》-4.凸优化-4.1.无约束优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249267

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]