《数学基础》-4.凸优化-4.1.无约束优化

2023-10-20 19:32

本文主要是介绍《数学基础》-4.凸优化-4.1.无约束优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4.1.无约束优化

4.1.1.无约束优化问题

无约束优化问题是机器学习中最普遍、最简单的优化问题。

求最大值也可以 在前面加上负号,变成上面求最小的形式。

求一个函数f(x)的最小值可以对函数f(x)求导并使其等于0(或者说使得梯度▽f(x)等于0),但是很多复杂的函数求导后没法求出解,所以这种方法实际上很少用。

常用梯度下降法、牛顿法或者拟牛顿法求解。

4.1.2.梯度下降法

基于迭代的方法,从某个点开始找很多点,使得这些点满足:,且有,这里表示单位梯度,经常写作,λ表示步长,所以通项是:

实际上λ也不会取很大,一般是

其过程为:

  

梯度下降法的种类:

①批量梯度下降法(BGD)

更新系数时,所有样本都参与计算

优点:需要个很少的迭代次数就可以收敛

缺点:当样本量很大时,更新一次的时间很长

②随机梯度下降法(SGD)

更新系数时,从n个样本中随机选择一个样本参与计算,

优点:更新一次的时间很短,所以大样本时有优势

缺点:会受到每一个样本的影响会很大,不稳定,需要更多的迭代次数才能收敛

③小批量梯度下降法(MBGD)

结合了批量梯度下降法和随机梯度下降法,选择一小部分样本参与计算

例如:

所有的样本都算完,就是一个epoch

4.1.3.牛顿法

求一个函数的最小值可以对函数求导并使其等于0(或者说使得梯度等于0):,把函数的导数看做一个函数,令

牛顿法求的过程也是迭代过程

假设的函数曲线是这个样子,要找到那个的点,先做某个的切线,然后找到切线与x轴相交的点然后再做的切线,以此类推,不断逼近的点。

先来求第一条切线的方程:

令y=0(就是上图中的点)得:

再把带入得:

这是二维的情况,如果是多维的情况:

其中H是海森矩阵,除以海森矩阵就是乘以它的逆矩阵。

为什么这里是海森矩阵?因为的n维向量,是n维向量,二次求导就是海森矩阵。

在机器学习中,要算海森矩阵的逆矩阵很麻烦,于是就引申出了很多种拟牛顿法BFGS(用另外一个矩阵来逼近海森矩阵的逆矩阵)。

 

牛顿法收敛速度

按这个迭代原理,就应该是函数的局部最优点,也就是有最小值,且有要弄明白这个收敛速度,就是要比较下的距离和的距离的区别,由上述结论得:

由于,所以分子加上得:

根据中值定理f(b)−f(a)=(b−a)f′(ξ),a<ξ<b,得:

再利用拉格朗日中值定理得:

ξ是在之间的,所以

由于M的分子分母都是导数,导数都是有界的,所以M是有界的,用表示其上界。

即:

的距离小于1:,则,这里是按照平方的速度进行收敛的,收敛速度更快,注意这里有条件:x的距离小于1,如果距离大于1,上界会越来越大,没法收敛。

 

综上,牛顿法要拟合,不能离最小值太远的地方拟合,越接近极小值再拟合收敛的效果越好。因此可以先用梯度下降,到了局部极小值附近后再用牛顿法。

这篇关于《数学基础》-4.凸优化-4.1.无约束优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249267

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件