《数学基础》-4.凸优化-4.1.无约束优化

2023-10-20 19:32

本文主要是介绍《数学基础》-4.凸优化-4.1.无约束优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4.1.无约束优化

4.1.1.无约束优化问题

无约束优化问题是机器学习中最普遍、最简单的优化问题。

求最大值也可以 在前面加上负号,变成上面求最小的形式。

求一个函数f(x)的最小值可以对函数f(x)求导并使其等于0(或者说使得梯度▽f(x)等于0),但是很多复杂的函数求导后没法求出解,所以这种方法实际上很少用。

常用梯度下降法、牛顿法或者拟牛顿法求解。

4.1.2.梯度下降法

基于迭代的方法,从某个点开始找很多点,使得这些点满足:,且有,这里表示单位梯度,经常写作,λ表示步长,所以通项是:

实际上λ也不会取很大,一般是

其过程为:

  

梯度下降法的种类:

①批量梯度下降法(BGD)

更新系数时,所有样本都参与计算

优点:需要个很少的迭代次数就可以收敛

缺点:当样本量很大时,更新一次的时间很长

②随机梯度下降法(SGD)

更新系数时,从n个样本中随机选择一个样本参与计算,

优点:更新一次的时间很短,所以大样本时有优势

缺点:会受到每一个样本的影响会很大,不稳定,需要更多的迭代次数才能收敛

③小批量梯度下降法(MBGD)

结合了批量梯度下降法和随机梯度下降法,选择一小部分样本参与计算

例如:

所有的样本都算完,就是一个epoch

4.1.3.牛顿法

求一个函数的最小值可以对函数求导并使其等于0(或者说使得梯度等于0):,把函数的导数看做一个函数,令

牛顿法求的过程也是迭代过程

假设的函数曲线是这个样子,要找到那个的点,先做某个的切线,然后找到切线与x轴相交的点然后再做的切线,以此类推,不断逼近的点。

先来求第一条切线的方程:

令y=0(就是上图中的点)得:

再把带入得:

这是二维的情况,如果是多维的情况:

其中H是海森矩阵,除以海森矩阵就是乘以它的逆矩阵。

为什么这里是海森矩阵?因为的n维向量,是n维向量,二次求导就是海森矩阵。

在机器学习中,要算海森矩阵的逆矩阵很麻烦,于是就引申出了很多种拟牛顿法BFGS(用另外一个矩阵来逼近海森矩阵的逆矩阵)。

 

牛顿法收敛速度

按这个迭代原理,就应该是函数的局部最优点,也就是有最小值,且有要弄明白这个收敛速度,就是要比较下的距离和的距离的区别,由上述结论得:

由于,所以分子加上得:

根据中值定理f(b)−f(a)=(b−a)f′(ξ),a<ξ<b,得:

再利用拉格朗日中值定理得:

ξ是在之间的,所以

由于M的分子分母都是导数,导数都是有界的,所以M是有界的,用表示其上界。

即:

的距离小于1:,则,这里是按照平方的速度进行收敛的,收敛速度更快,注意这里有条件:x的距离小于1,如果距离大于1,上界会越来越大,没法收敛。

 

综上,牛顿法要拟合,不能离最小值太远的地方拟合,越接近极小值再拟合收敛的效果越好。因此可以先用梯度下降,到了局部极小值附近后再用牛顿法。

这篇关于《数学基础》-4.凸优化-4.1.无约束优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249267

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3