激活函数-Concatenated Rectified Linear Units

2023-10-20 16:50

本文主要是介绍激活函数-Concatenated Rectified Linear Units,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ICML2016

Understanding and Improving Convolutional Neural Networks via
Concatenated Rectified Linear Units

本文在深入分析CNN网络内部结构,发现在CNN网络的前几层学习到的滤波器中存在负相关。
they appear surprisingly opposite to each other, i.e., for each filter, there does exist another filter that is almost on the opposite phase

这里写图片描述

下图说明在第一卷积层,蓝色的直方图分布以-0.5为中心点,对称均匀分布,也就是说有较多成对的滤波器。越到后面的层,蓝色的直方图分布越集中,成对的滤波器越少。
这里写图片描述

也就是说学习到的滤波器存在冗余。对此我们设计了CReLU, It simply makes
an identical copy of the linear responses after convolution, negate them, concatenate both parts of activation, and then apply ReLU altogether
这里写图片描述
这里写图片描述

和其他方法结果对比
这里写图片描述

CReLU 的重构很好
这里写图片描述

这篇关于激活函数-Concatenated Rectified Linear Units的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248393

相关文章

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

JavaSE(十三)——函数式编程(Lambda表达式、方法引用、Stream流)

函数式编程 函数式编程 是 Java 8 引入的一个重要特性,它允许开发者以函数作为一等公民(first-class citizens)的方式编程,即函数可以作为参数传递给其他函数,也可以作为返回值。 这极大地提高了代码的可读性、可维护性和复用性。函数式编程的核心概念包括高阶函数、Lambda 表达式、函数式接口、流(Streams)和 Optional 类等。 函数式编程的核心是Lambda

PHP APC缓存函数使用教程

APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”。它为我们提供了缓存和优化PHP的中间代码的框架。 APC的缓存分两部分:系统缓存和用户数据缓存。(Linux APC扩展安装) 系统缓存 它是指APC把PHP文件源码的编译结果缓存起来,然后在每次调用时先对比时间标记。如果未过期,则使用缓存的中间代码运行。默认缓存 3600s(一小时)。但是这样仍会浪费大量C