如何自己的医疗图像分割数据集 使用NNunet进行训练

2023-10-20 11:28

本文主要是介绍如何自己的医疗图像分割数据集 使用NNunet进行训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NNUNet使用自定义医疗图像分割数据集进行分割训练

主要讲解怎么把自己的数据放到nnUnet进行训练,不涉及nnUnet的原理和推导讲解。

1、转换的思路。

从NNUNet的开源代码中可以看到,NNUnetV2已经支持了很多的数据格式。但是因为其底层的逻辑主要是解决医学十项全能的任务,所以对于医疗图像的分割,建议按照医学十项分割的数据格式准备你的数据,从而有利于执行后续的转换。下图列举了医学十项全能的数据存储结构:
在这里插入图片描述imagesTr代表训练集的图像数据,imagesTs代表的是测试集的图像。labelsTr代表的是测试集图像。
dataset.json—存储数据的基础信息,一般如下:

在这里插入图片描述
如果按照上图这样存储的数据,很多时候直接调用NNUNet代码中Dataset_conversion中的相关代码就可以执行转换了。可以看到这里面也提供了一些非十项全能任务的转换代码。
在这里插入图片描述
重头戏l来了。要转换,就要知道为什么要转换。接下来直接贴NNUNet官网的数据结构,下图为
在这里插入图片描述
再看看我们刚才自己的数据存储结构不一样:
在这里插入图片描述
可以看到其实主要的差别就是在存储图像的时候,NNUNetV2在图像的后面都加上了通道数0000、0001这样的标识。当然这里dataset.json保存的信息也有一定的变化:如下
在这里插入图片描述

大致和前面十项全能的类似的,但是将 “modality"改成了"channel_names” 这个主要是为了通用;第二个增加了file_endding这个关键字,这个是确定NNUNet调用什么库对图像进行读取的。

从上面的讲解中,大家应该知道了NNUNet所采取的文件结构以及dataset.json的内容。所以接下来我们就开始真正的进行数据转换。当然也可以直接把你的数据就按照NNUNet所要求的进行准备,那就不用转换了。

二、转换过程。

此处讲解的是如下结构的数据转换:
在这里插入图片描述
在这里插入图片描述

可以看到我们这里和NNUNetV2要求的数据存储结构,主要的区别就是在于文件的末尾没有添加通道标识,以及缺少dataset.json一般自己采集的数据都没有。
所以我们接下的任务就有两个:
1、更改文件名,并将其数据转移到nnUnet_raw对应的文件夹中
2、生成dataset.json文件。
以上两个任务呢就可以通过写脚本来实现了,刚刚在前面也提到了,NNUNet的官网已经提供了一些示例。我们就可以站在巨人的肩膀上,根据自己实际的数据结构进行适当的改动就可以了。
过程:
1、在图中的位置新建一个ConVertSelfData.py(文件名可以自由决定,建议按照官方代码的格式来命名)
在这里插入图片描述
2、在py文件中,写脚本完成上面说的两个任务,此处给我我自己写的代码作为参考:

import os.pathfrom batchgenerators.utilities.file_and_folder_operations import *
import shutil
from glob import glob
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json
from nnunetv2.paths import nnUNet_raw
def convert_selfData(data_path:str, nnunet_dataset_id:int =101):"""转换自己的数据为nnUnet需要的数据格式,主要操作 将原本的数据文件末尾后加入通道数对应的四位数字:例如原始的文件名为case1.nii.gz 如果只有单通道图像--->改变后为:case1_0000.nii.gz然后将文件复制到nnUnet_Raw文件夹中。最后按照一定的要求调用generate_dataset_json生成dataset.json 文件"""task_name = "Pancer_segmentation"foldername= "Dataset%03.d_%s" % (nnunet_dataset_id,task_name) #此变量用于生成在nnUnet_raw保存的文件夹名称,格式按照官方要求为Dataset任务号_任务名称# setting up nnU-Net foldersout_base = join(nnUNet_raw, foldername)print(out_base)imagestr = join(out_base, "imagesTr")imagests = join(out_base, "imagesTs")labelstr = join(out_base, "labelsTr")maybe_mkdir_p(imagestr)maybe_mkdir_p(imagests)maybe_mkdir_p(labelstr)### 大致的数据结构方式请参考医学十项全能的数据格式对数据进行存储和整理。### 接下来的部分需要自己写代码遍历自己的数据,然后重命令文件,并按照imagesTr,imagesTs,labelsTr重新保存在nnUnet_raw的文件夹中### imagesTr---训练集的输入图像,imagesTs-测试集的输入图像,labelsTr-训练集的标签图像。如果你的数据带有验证集,请把验证集的数据一并放到训练集中### nnUnet采取的是使用交叉验证的方法对数据进行训练和筛选。且segmentation的图像的标签要为0,1,2,3train_img_list =sorted(glob(os.path.join(data_path,"imagesTr/*.nii.gz")))test_img_list = sorted(glob(os.path.join(data_path,"imagesTs/*.nii.gz")))train_mask_list = sorted(glob(os.path.join(data_path,"labelsTr/*.nii.gz")))# print(len(train_mask_list),len(test_img_list))#for i in range(len(train_img_list)):tr = train_img_list[i].split('\\')[-1][:-7]shutil.copy(train_img_list[i], join(imagestr, f'{tr}_0000.nii.gz'))shutil.copy(train_mask_list[i], join(labelstr, f'{tr}.nii.gz'))for i in range(len(test_img_list)):tra = test_img_list[i].split('\\')[-1][:-7]shutil.copy(test_img_list[i], join(imagests, f'{tra}_0000.nii.gz'))label_dict = {"background": 0,"pancreas": 1}### 这个根据自己的数据定义标签 二分类的话形如:{"background": 0,"spleen": 1}### 解释一下参数"""out_base:nnUnet_raw+数据任务文件夹地址{0:"CT"} 代表的是图像的通道数,如果是单一图像来源 就只有一个通道,比如CT。对于MR有多个序列的,一个数字对应有一个序列:如{0:"T1",1:"T2"} 如果是多个通道,那么上面迁移数据的时候 就要记得在对应通道后面的文件名上加上对应的编号,如case01_0000.nii.gz,case01_0001.nii.gzlabels:标签对应的映射表datasetname:数据集或者自己要分割任务的名称overwrite_image_reader_writer:确定nnUnet数据读取的方式。如果是医疗图像 且为nii文件,不用修改。其他格式文件请参考官网dataformat部分description:对数据集的描述,相当于自己写备忘录。"""generate_dataset_json(out_base, {0: "CT"}, labels=label_dict,num_training_cases=len(train_img_list), file_ending='.nii.gz',dataset_name=task_name, reference='Private data no reference ',release='Private data no publice link',overwrite_image_reader_writer='NibabelIOWithReorient',description="This is a private dataset,don't provide data description.")

3、在文件末尾添加,然后给出你自己数据集的地址,以及一个任务ID号就可以愉快的完成数据转换了。转换成功后 便可以在nnUNet_raw文件夹中看到数据。


if __name__ == '__main__':# convert_amos_task1(r"D:\amos22 (1)\amos22", 218)convert_selfData(r"E:\Pytorch\DataProcess\胰腺炎\NNUNetRawNII",300)

关于NNUNet的配置和训练就可以按照我的上一篇博客开始愉快的训练等结果啦!

这篇关于如何自己的医疗图像分割数据集 使用NNunet进行训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/246785

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本