Online Stock Span 库存价格持续时间计算 #算法#

2023-10-20 00:18

本文主要是介绍Online Stock Span 库存价格持续时间计算 #算法#,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题如下:

Write a class StockSpanner which collects daily price quotes for some stock, and returns the span of that stock’s price for the current day.

The span of the stock’s price today is defined as the maximum number of consecutive days (starting from today and going backwards) for which the price of the stock was less than or equal to today’s price.

For example, if the price of a stock over the next 7 days were [100, 80, 60, 70, 60, 75, 85], then the stock spans would be [1, 1, 1, 2, 1, 4, 6].

中文解释:要计算某天的价格的span,就是从当天开始往回算,连续几天的价格小于等于当天的价格,当天的span就是几。

Example 1:

Input: [“StockSpanner”,“next”,“next”,“next”,“next”,“next”,“next”,“next”], [[],[100],[80],[60],[70],[60],[75],[85]]
Output: [null,1,1,1,2,1,4,6]
Explanation:
First, S = StockSpanner() is initialized. Then:
S.next(100) is called and returns 1,
S.next(80) is called and returns 1,
S.next(60) is called and returns 1,
S.next(70) is called and returns 2,
S.next(60) is called and returns 1,
S.next(75) is called and returns 4,
S.next(85) is called and returns 6.

Note that (for example) S.next(75) returned 4, because the last 4 prices
(including today’s price of 75) were less than or equal to today’s price.

Note:(这些可忽略)

  1. Calls to StockSpanner.next(int price) will have 1 <= price <= 10^5.
  2. There will be at most 10000 calls to StockSpanner.next per test case.
  3. There will be at most 150000 calls to StockSpanner.next across all test cases.
  4. The total time limit for this problem has been reduced by 75% for C++, and 50% for all other languages.

思路

每个新的price对应一个span,每次加入一个price时,跟前面的price比较,若前面的比它小,则其span要加上前面的span,且该较小price的项应该删除,因为其span已经被加到后面price较大的项中去了,如果不删掉,下次会重复加span,导致错误,此外,这些项已经不需要用到,删掉可以节省空间。
对于每一项,可以定义一个结构体,包含一个price和span;然后再用一个容纳该结构体的vector容器,当做一个栈使用(也可以直接用stack);每次加入新项时,与前面的项的price相比,其span加上较小price的项的span,再pop掉相等或较小price的项,直到price大于当天的price,停止pop并把新项加入。

讲得比较绕口,举个例子:
比如依次添加的price为:[100, 80, 60, 70, 60, 75, 85]
则栈中的结构体依次为:(每个元素表示{price, span})
[{100, 1}]
[{100, 1}, {80, 1}]
[{100, 1}, {80, 1}, {60, 1}]
[{100, 1}, {80, 1}, {70, 2}] 注:插入70时发现60比较小,于是删掉60,且span=1+1=2
[{100, 1}, {80, 1}, {70, 2}, {60, 1}]
[{100, 1}, {80, 1}, {75, 4}] 注:插入75时发现60和70都比较小,于是删掉它们,且span=1+1+2=4
[{100, 1}, {85, 6}] 注:插入85时发现75和80都比较小,于是删掉它们,且span=1+4+1=6

c++代码

class StockSpanner {
public:StockSpanner() {}int next(int price) {node n;n.last_price = price;n.span = 1;while(!spans.empty()){// 看一下原来栈中的最后一项node back = spans.back();// 比较其priceif(back.last_price <= price){n.span += back.span;spans.pop_back();}else break;}spans.push_back(n);return n.span;}
private:// 定义一个表示一天价格项的结构体struct node{int last_price;int span;};vector<node> spans;
};

这篇关于Online Stock Span 库存价格持续时间计算 #算法#的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243305

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig