使用simulink仿真连续(离散)线性定长系统全维渐进状态观测器

本文主要是介绍使用simulink仿真连续(离散)线性定长系统全维渐进状态观测器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

系统模型:

闭环极点设计分离性

设计系统输出反馈系数K

转换标准能控型

设计反馈矩阵G

仿真

matlab代码

simulink模型

仿真结果

 仿真程序下载地址:连续定常系统全维状态观测器simulink仿真m代码-智慧城市文档类资源-CSDN下载​​​​​​​

全维数字观测器输出反馈-智能家居文档类资源-CSDN下载


系统模型:

       \begin{gathered} A=\left[\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right], B=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \end{array}\right], C=\left[\begin{array}{llll} 1 & 0 & 0 & 0 \end{array}\right] \\ \dot{x}=A x+B u \\ y=C x \end{gathered}      

闭环极点设计分离性

        闭环系统的极点包括\Sigma_{0}直接状态反馈系统\Sigma_{K}=(A+KB,B,C)的极点和观测器
\Sigma_G的极点两部分。但二者独立,相互分离。表明,由观测器构成状态反馈的闭环系统,其特征多项式等于矩阵(A+BK)与矩阵(A-GC)的特征多项式的乘积。亦即闭环系统的极点等于直接状态反馈(A+BK)的极点和状态观测器(A-GC)的极点之总和,而且二者相互独立。因此只要系统(A,B,C)能控能观,则系统的状态反馈矩阵K和观测器反馈矩阵G可分别进行设计。这个性质称为闭环极点设计的分离性。

                    

                        图1 渐进状态观测器                                        图2输出反馈

            \hat{\hat{x}}=(A-G C) \hat{x}+G y+B u                                 ​​​​​\begin{aligned} &\dot{x}=(A+B K) x+B v \\ &y=(C+D K) x+D v \end{aligned}                                  

设计系统输出反馈系数K

        证明系统能控性

rank(\left[B A B A^{2} B A^{3} B\right])=4

转换标准能控型

        系统传递函数

W(s)=C(s I-A)=\frac{-3 s+2}{s^{2}}

        线性非奇异变换矩阵

T=\left[A^{3} B A^{2} B \quad A B \quad B\right]\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ a 3 & 1 & 0 & 0 \\ a 2 & a 3 & 1 & 0 \\ a 1 & a 2 & a 3 & 1 \end{array}\right]

        标准能控1型

\begin{aligned} &\tilde{A}=T^{-1} A T=\left[\begin{array}{llll} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]\\ &\tilde{B}=T^{-1} B=\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \end{array}\right]\\ &\tilde{C}=C T=\left[\begin{array}{llll} 2 & -3 & 0 & 0 \end{array}\right] \end{aligned}

        加入状态反馈增益矩阵

\begin{aligned} \widetilde{K}=K T &=[k 0, k 1, k 2, k 3] \\ \tilde{A}+\tilde{B} \widetilde{K} &=\left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ k 0 & k 1 & k 2 & k 3 \end{array}\right] \end{aligned}

        闭环特征多项式

f(\lambda)=|\lambda I-(\tilde{A}+\tilde{B} \widetilde{K})|=\lambda^{4}-k 3 \lambda^{3}-k 2 \lambda^{2}-k 1 \lambda-k 0

        使闭环极点与期望的极点相符求出增益K        

\begin{gathered} \lambda_{1,2}^{*}=-1, \lambda^{*}{ }_{3,4}=\pm j \\ f^{*}(\lambda)=(\lambda+1)^{2}\left(\lambda^{2}+1\right)=\lambda^{4}+2 \lambda^{3}+2 \lambda^{2}+2 \lambda+1 \\ f(\lambda)=f^{*}(\lambda) \\ \widetilde{K}=K T=[-1,-2,-2,-2] \\ K=[-0.5,1.75,7.25,-2] \end{gathered}

设计反馈矩阵G

        验证系统能观

\operatorname{rank}\left[\begin{array}{c} C \\ C A \\ C A^{2} \\ C A^{3} \end{array}\right]=4

         观测器方程

\begin{gathered} \left\{\begin{array}{c} \dot{\hat{x}}=A \hat{x}+B u+G(y-\hat{y}) \\ \hat{y}=C\hat{x} \end{array}\right. \\\left\{\begin{array}{c} \hat{x}=(A-G C) \hat{x}+B u+G y \\ \hat{y}=C \hat{x} \end{array}\right. \end{gathered}

        非奇异变换

T^{-1}=\left[\begin{array}{llll} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]\left[\begin{array}{c} C A^{3} \\ C A^{2} \\ C A \\ C \end{array}\right]

        能观标准2型

\begin{aligned} &A=T^{-1} A T=\left[\begin{array}{llll} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]\\ &\bar{B}=T^{-1} B=\left[\begin{array}{c} 2 \\ -3 \\ 0 \\ 0 \end{array}\right]\\ &\bar{C}=C T=\left[\begin{array}{llll} 0 & 0 & 0 & 1 \end{array}\right] \end{aligned}

        闭环特征多项式

\begin{gathered} \bar{G}=T G=[g 0, g 1, g 2, g 3] \\ \ddot{A}-\tilde{G} C=\left[\begin{array}{llll} 0 & 0 & 0 & -g 0 \\ 1 & 0 & 0 & -g 1 \\ 0 & 1 & 0 & -g 2 \\ 0 & 0 & 1 & -g 3 \end{array}\right] \end{gathered}

f(\lambda)=|\lambda I-(\bar{A}-\bar{G} \bar{C})|=\lambda^{4}+g 3 \lambda^{3}+g 2 \lambda^{2}+g 1 \lambda+g 0

        使闭环极点与期望的极点相符求出增益G

\begin{gathered} f^{*}(\lambda)=(\lambda+1)^{4}=\lambda^{4}+4 \lambda^{3}+6 \lambda^{2}+4 \lambda+1 \\ f(\lambda)=f^{*}(\lambda) \\ G=T G=[4,6,4,1] \\ G=[4,-6,-2.75,-0.5] \end{gathered}       

仿真

matlab代码

clear
A = [0 -1 0 0;0 0 2 3;0 0 0 -1;0 0 0 0];
B = [0;0;0;1];
C = [1 0 0 0];
%配置目标极点
K = acker(A,B,[-1,-1,-1+i,-1-i]);
%设计观测器
G=acker(A',C',[-1,-1,-1,-1])';

simulink模型

仿真结果

 仿真程序下载地址:连续定常系统全维状态观测器simulink仿真m代码-智慧城市文档类资源-CSDN下载​​​​​​​

全维数字观测器输出反馈-智能家居文档类资源-CSDN下载

相关文章:

使用simulink仿真连续(离散)线性定长系统全维渐进状态观测器_Giiwedin的博客-CSDN博客

使用drem对控制系统进行参数估计simulink仿真_Giiwedin的博客-CSDN博客

对给定干扰信号的simulink数字控制系统仿真_Giiwedin的博客-CSDN博客_simulink扰动信号

二相混合式步进电机闭环矢量控制simulink仿真(含仿真文件)_Giiwedin的博客-CSDN博客_步进电机数学模型

二相混合式步进电机开环细分控制simulink建模仿真含模型文件_Giiwedin的博客-CSDN博客

这篇关于使用simulink仿真连续(离散)线性定长系统全维渐进状态观测器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242004

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp