多变量微积分笔记17——通量

2023-10-19 15:30

本文主要是介绍多变量微积分笔记17——通量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在流体运动中,通量是单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量。在大气科学中,包含动量通量、热通量、物质通量和水通量。

  本章关于向量和点积的相关知识课参考《线性代数笔记3——向量2(点积)》。

通量

  通量实际上是一种线积分。如果有一条平面曲线C和这个平面上的向量场F,通量用符号表示就是:

 

  其中ds是曲线C的微元,n是垂直于ds的单位法向量(按C的方向顺时针旋转90°):

  如果把F看成一个流速场,比如水流正在以某种速度流动,那么F解释了在平面上每一点的水流流动情况。处于F中的曲线C的通量度量了单位时间内有多少流体流过曲线C。可以将F看成河流,C是位于河中的渔网,通量可以计算单位时间内有多少河水流过了渔网。

  如下图所示,ΔS是匀速场中曲线的一小段:

  在单位时间后,通过ΔS的水流将是一个平行四边形:

  已知平行四边形的一边ΔS,另一边由F表示,如果用ΔS作底,那么平行四边形的面积:

 

  如果流体不是匀速的,需要取足够小的单位时间。将所有流过ΔS的水流做积分,就是单位时间内通过C的水流的净流量,即C的通量。如果流体从左到右通过C,通量取正值;反之取负值。

  对比线积分的定义,

 

  在线积分中,FT的点积表示FT方向的分量,T与ds同向,线积分度量的是在场中沿曲线前进F做的功,或者说克服F做了多少功;在通量中,Fn的点积表示F n方向的分向量,n与ds垂直,通量度量的是有多少向量场会通过曲线,正负号表示通量的方向。

通量的计算

几何方法

  如下图所示,曲线C是半径为a,圆心在原点的圆,求C在场中的通量。

  如果C在F = -yi + xj中,则nF,二者的点积是0,通量也是0,因为水流绕着C流动,并没有流过C。

线积分法

  我们将上一节的计算方法称为几何法,这对简单的通量很有效,但事实上曲线C往往很复杂,这就需要一种常规的方法。既然通量的表达式与线积分相似,就可以尝试用线积分计算通量。

  在线积分中:

 

  T 是ds同向的单位向量。对比通量,n是ds的法向量(将T顺时针旋转90°),所以:

 

  现在可以总结通量的计算公式,如果向量场F = <M,N>:

 

  在物理解释上,通量和线积分描述了不同的度量,但是在计算上,二者没有什么实质性区别。

格林公式

  如果是在处处有定义且处处可导的平面向量场F = <M,N>中求逆时针方向闭合曲线C的通量,就可以和线积分一样,使用格林公式。

 

  与上一篇的线积分不同,通量是求F在ds法向量方向分量的积分,所以上面的公式也被称为格林公式的正交形式,它是格林公式的另一种表达。

公式的证明

散度

  这里的div(F)就是散度,它度量的是流体的发散程度。现在,格林公式可以写成:

 

示例

  曲线C是逆时针方向半径为a的圆,求C在场F = xi + yj中的通量。

 

综合示例

示例1

  计算通量

  a) F = 3<1, 1>,C from (0,0) to (1,1)

  a) F = 3< -1, 1>,C from (0,0) to (1,1)

  a)

  b)

示例2

  计算向量场F = <x, y>中C的通量,C由单位半圆和x轴上的线段围成,如下图所示:

  方法1:使用格林公式

 

  方法2:使用线积分

 

 


作者:我是8位的

出处:http://www.cnblogs.com/bigmonkey

本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

扫描二维码关注公众号“我是8位的”

这篇关于多变量微积分笔记17——通量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240708

相关文章

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个