遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现)

2023-10-19 13:50

本文主要是介绍遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 遗传算法

2 RBF神经网络

3 Matlab代码实现

4 结果 


1 遗传算法

*智能优化算法(持续更新中......)

2 RBF神经网络

RBF神将网络是一种三层神经网络,其包括输入层、隐层、输出层。从输入空间到隐层空间的变换是非线性的,而从隐层空间到输出层空间变换是线性的。流图如下:

                          

RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接映射到隐空间,而不需要通过权连接。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。其中,隐含层的作用是把向量从低维度的p映射到高维度的h,这样低维度线性不可分的情况到高维度就可以变得线性可分了,主要就是核函数的思想

这样,网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。


3 Matlab代码实现

GA.m

clear all
close allG = 15;
Size = 30;
CodeL = 10;for i = 1:3MinX(i) = 0.1*ones(1);MaxX(i) = 3*ones(1);
end
for i = 4:1:9MinX(i) = -3*ones(1);MaxX(i) = 3*ones(1);
end
for i = 10:1:12MinX(i) = -ones(1);MaxX(i) = ones(1);
endE = round(rand(Size,12*CodeL));  %Initial Code!BsJ = 0;for kg = 1:1:Gtime(kg) = kgfor s = 1:1:Sizem = E(s,:);for j = 1:1:12y(j) = 0;mj = m((j-1)*CodeL + 1:1:j*CodeL);for i = 1:1:CodeLy(j) = y(j) + mj(i)*2^(i-1);endf(s,j) = (MaxX(j) - MinX(j))*y(j)/1023 + MinX(j);end% ************Step 1:Evaluate BestJ *******************p = f(s,:);[p,BsJ] = RBF(p,BsJ);BsJi(s) = BsJ;end[OderJi,IndexJi] = sort(BsJi);BestJ(kg) = OderJi(1);BJ = BestJ(kg);Ji = BsJi+1e-10;fi = 1./Ji;[Oderfi,Indexfi] = sort(fi);Bestfi = Oderfi(Size);BestS = E(Indexfi(Size),:);% ***************Step 2:Select and Reproduct Operation*********fi_sum = sum(fi);fi_Size = (Oderfi/fi_sum)*Size;fi_S = floor(fi_Size);kk = 1;for i = 1:1:Sizefor j = 1:1:fi_S(i)TempE(kk,:) = E(Indexfi(i),:);kk = kk + 1;endend% ****************Step 3:Crossover Operation*******************pc = 0.60;n = ceil(20*rand);for i = 1:2:(Size - 1)temp = rand;if pc>tempfor j = n:1:20TempE(i,j) = E(i+1,j);TempE(i+1,j) = E(i,j);endendendTempE(Size,:) = BestS;E = TempE;%*****************Step 4:Mutation Operation*********************pm = 0.001 - [1:1:Size]*(0.001)/Size;for i = 1:1:Sizefor j = 1:1:12*CodeLtemp = rand;if pm>tempif TempE(i,j) == 0TempE(i,j) = 1;elseTempE(i,j) = 0;endendendend%Guarantee TempE(Size,:) belong to the best individualTempE(Size,:) = BestS;E = TempE;%********************************************************************endBestfiBestSfiBest_J = BestJ(G)figure(1);plot(time,BestJ);xlabel('Times');ylabel('BestJ');save pfile p;

RBF.m 

Test.m

clear all;
close all;load pfile;
alfa = 0.05;
xite = 0.85;
x = [0,0]';%M为1时
M = 2;
if M == 1b = [p(1);p(2);p(3)];c = [p(4) p(5) p(6);p(7) p(8) p(9)];w = [p(10);p(11);p(12)];
elseif M == 2b = 3*rand(3,1);c = 3*rands(2,3);w = rands(3,1);
endw_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;y_1 = 0;ts = 0.001;
for k = 1:1500time(k) = k*ts;u(k) = sin(5*2*pi*k*ts);y(k) = u(k)^3 + y_1/(1 + y_1^2);x(1) = u(k);x(2) = y(k);for j = 1:3h(j) = exp(-norm(x-c(:,j))^2/(2*b(j)*b(j)));endym(k) = w_1'*h';e(k) = y(k) - ym(k);d_w = 0*w;d_b = 0*b;d_c=0*c;for j = 1:1:3d_w(j) = xite*e(k)*h(j);d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;for i = 1:1:2d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i) - c(i,j))*(b(j)^-2);endendw = w_1 + d_w + alfa*(w_1 - w_2);b = b_1 + d_b + alfa*(b_1 - b_2);c = c_1 + d_c + alfa*(c_1 - c_2);y_1 = y(k);w_2 = w_1;w_1 = w;c_2 = c_1;c_1 = c;b_2 = b;end
figure(1);
plot(time,ym,'r',time,y,'b');
xlabel('times(s)');ylabel('y and ym');

pfile.mat 

p: [2.9915 2.9008 2.4982 1.0059 1.1056 0.8006 0.4780 1.6100 -1.3460 -0.7204 0.4076 0.2786]

4 结果 

                    

这篇关于遗传算法(GA)优化后RBF神经网络优化分析(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240202

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实