本文介绍了一种发现两个随机变量之间依赖关系强度的度量MIC(最大信息系数,类似于相关系数的作用)。MIC具有以下性质和优势:
MIC度量具有普适性。其不仅可以发现变量间的线性函数关系,还能发现非线性函数关系(指数的,周期的);不仅能发现函数关系,还能发现非函数关系(比如函数关系的叠加,或者有趣的图形模式)。
MIC度量具有均衡性。对于相同噪声水平的函数关系或者非函数关系,MIC度量具有近似的值。所以MIC度量不仅可以用来纵向比较同一相关关系的强度,还可以用来横向比较不同关系的强度。
MIC度量计算的方法。具有两个属性的数据点的集合分布在两维的空间中,使用m乘以n的网格划分数据空间,使落在第(x,y)格子中的数据点的频率作为P(x,y)的估计即,使落在第x行的数据点的频率作为P(x)的估计,同理获得P(y)的估计。然后计算随机变量X、Y的互信息。因为m乘以n的网格划分数据点的方式不止一种,所