极简单但贼有效的Fine-tuning算法,几行代码最高涨点8%

2023-10-19 07:59

本文主要是介绍极简单但贼有效的Fine-tuning算法,几行代码最高涨点8%,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每天给你送来NLP技术干货!


来自: 罗福莉

 或许自上次N篇ACL事件后,不少人会突然发现我销声匿迹了。的确,我20年论文断供整整一年。这一年我经历了论文从量变到质变的痛苦蜕变过程,而今天这一篇论文就是在这个过程后的第一个我略微满意的工作Child-Tuning,推荐给大家。

c38803472169b9fbc09815887d0f1fa8.png

自BERT火了以后,基本上现在所有NLP领域都all in Pre-training & Fine-tuning了吧?但当“大”规模预训练模型遇上“小”规模标注数据时,往往直接Fine-tuning会存在过拟合现象,进一步会影响Fine-tune完后模型的Generalization能力。如何更好地应对这一问题呢?我们提出的Child-Tuning给出了一种新的解法--在Fine-tuning过程中仅更新预训练模型中部分网络的参数(这部分网络本文就叫做Child Network)这么简单直接的做法却效果奇赞,结果在GLUE上相较标准Fine-tune有0.5~8.6个点的效果提升,但却只需要几行代码的修改,你不想试试吗?

目前,该论文《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》已被EMNLP'21接收(点击文末阅读原文跳转至论文)。

Paper:https://arxiv.org/pdf/2109.05687.pdf 

Code:https://github.com/alibaba/AliceMind/tree/main/ChildTuning


01

当“大”模型遇上“小”数据

自BERT提出以来,预训练模型的参数量从最开始的3亿,逐渐攀升到了GPT-2的15亿,再到火出NLP圈的1750亿参数的GPT-3。

一方面模型越来越大,但另一方面,下游任务的标注数据量有些情况下却很少。如果直接将“大”模型在下游“小”数据上进行标准的Fine-tune,将模型迁移到目标任务中去,会导致什么情况呢?由于这种“大”与“小”的不匹配,往往容易出现过拟合的现象,导致模型在下游任务中的表现差、不稳定、泛化性能差等现象,从而影响我们对于预训练模型的使用[1]。

因此,越来越多工作开始聚焦于如何解决这种不匹配现象,缓解大规模预训练模型在下游任务中的过拟合。本文介绍的Child-Tuning围绕这个问题进行探究,从backward参数更新的角度思考问题,提出一种新的Fine-tuning策略,在Fine-tuning过程中仅更新对应的Child Network,在不同下游任务中相比Vanilla Fine-tuning有明显提高,如基于BERT模型在四个不同数据集中平均带来1.5个点的提升,在ELETRA上甚至提升8.6个点

02

Child-Tuning 简单有效的微调算法

在Fine-tuning过程中,我们一方面想利用大规模预训练模型提供的强大知识,另一方面又想解决“海量参数”与“少量标注样本”的不匹配问题,那么能否采用这样的方式来解决问题呢?在forward的时候保持与正常Fine-tune一样,利用整个模型的参数来编码输入样本;在backward更新参数的时候,无需调整海量庞大的参数,而是仅仅其中中的一部分,即网络中的一个Child Network。

基于这个想法,本文提出一个新的Fine-tuning的策略——Child-Tuning。Child-Tuning的想法很简单,做法也很简单,概括性地讲可以分为两个步骤:

  • Step1:在预训练模型中发现确认Child Network,并生成对应的Weights的Gradients 0-1 Mask;

  • Step2:在后向传播计算完梯度之后,仅仅对Child Network中的参数进行更新,而其他参数保持不变。

    整个过程如下图所示:

404362f86302c79b6a00955d68cf6e60.png

图1: 通过Gradients Mask来实现只对Child Network进行参数更新

在前面提到的Child-Tuning的两个步骤中,Step2即仅对Child Network中的参数进行更新相对简单。我们可以通过一个梯度掩码(Gradients Mask)来实现,即在计算出各个参数位置的梯度之后将其乘以一个0-1矩阵的梯度掩码,属于Child Network中参数的位置对应为1,而不属于的对应为0,之后再进行参数的更新。

那问题的关键就落到了,怎么识别Step1提到的Child Network呢?本文探索了两种算法。一种是与下游任务无关的Child-Tuning_F方法,另一种则是与下游任务相关、能够自适应感知下游任务特点的Child-Tuning_D,这两种方式各有优缺点。

任务无关算法Child-Tuning_F

对于下游任务无关算法Child-Tuning_F(F for Task-Free) ,其最大的优点是简单有效,在Fine-tune的过程中,只需要在每一步更新的迭代中,从伯努利分布中采样得到一个Gradients Mask (M_t)即可,相当于在对网络参数更新的时候随机地将一部分梯度丢弃

bec202e5146f3109c3f1818a165237ba.png

图2: Child-Tuning_F的Child Network由伯努利分布中采样得到

尽管方式简单,我们从理论上证明(详细见原论文)这种方法可以有效提高模型更新量的方差,有利于模型逃离局部最优点,最终收敛于一个相对比较平坦的损失曲面上,从而提高模型的泛化能力。

任务相关算法Child-Tuning_D

然而对于下游任务无关微调算法Child-Tuning_F,也有一个缺点,就是它对于不同的下游任务的策略都是一样的,对于模型中的不同参数也都平等对待。为此,我们提出了一个任务相关的Child-Tuning_D (D for Task-Driven ),让选取Child Network的策略能够针对不同的下游任务自适应地进行调整,选择出与下游任务最相关最重要的参数来充当Child Network。

具体的,我们引入Fisher Information Matrix(FIM)[2] 来估计每个参数对于下游任务的重要性程度,并与前人工作一致近似采用FIM的对角矩阵(即假设参数之间互相独立)来计算各个参数相对下游任务的重要性分数[3],之后选择分数最高的那部分参数作为我们的Child-Network。

9147c4ebf39384e7779573ed0d610139.png

图3: Child-Tuning_D通过计算参数的Fisher Information确定Child Network

尽管Child-Tuning_D拥有感知下游任务特性的能力,但同时计算Fisher Information也降低了方法的效率,我们不可能在每次迭代的时候都重新计算估计一次Child Network。因此,我们采用的策略是在Fine-tuning一开始的时候识别出Child Network,并在接下来的迭代中都保持不变,也就是整个Fine-tuning过程只有这部分参数会被更新,我们的实验证明了这种近似手段同样可以取得不错的效果(我们曾经尝试过在每个epoch之后重新估计一次,但是效果反而不如自始自终保持一致的这种方式)。

02

Child-Tuning 实现仅需几行代码

总的来说,(在基于Adam优化器下的)Child-Tuning的伪代码如图4所示,最关键的部分在于红框内的内容,即发现Child Network,以及根据Child Network生成梯度掩模,从而实现仅对Child Network中的参数进行更新。

cc1b32bdef75b032d4f9587f5c1adbc1.png

图4: Child-Tuning的伪代码实现,主要内容在红框部分

具体到代码实现层面,就只需要在原来optimizer里加入简单几行代码:

for p in model.parameters():grad = p.grad.data## Child-Tuning_F Begin ## reserve_p = 0.2  # the ratio of gradients that are reserved. grad_mask = Bernoulli(grad.new_full(size=grad.size(), fill_value=reserve_p))grad *= grad_mask.sample() / reserve_p## Child-Tuning_F End ## # the followings are the original code of optimizer....

Child-Tuning代码已开源到阿里预训练体系AliceMind,关于实现的更多细节可以参看:https://github.com/alibaba/AliceMind/tree/main/ChildTuning。

03

实验结果

我们做的实验主要探究了微调后模型的效果和泛化性能(更多有趣实验可以参见论文:https://arxiv.org/pdf/2109.05687.pdf):

下游任务效果

我们选取了BERT-large, XLNet-large,RoBERTa-large和ELECTRA-large四个不同的预训练模型,并在四个GLUE基准集上的任务,即CoLA,RTE,MRPC跟STS-B上进行实验。从下表中可以看到,相比传统微调算法(Vanilla Fine-tuning),使用Child-Tuning的两个不同版本(Task-Free和Task-Driven)都能带来提高,BERT平均提升+1.5,ELETRA平均提升+8.6

da543f9cd96f4ed52588563eacd87830.png

微调后模型的泛化性能

我们通过两种不同的方式来探究模型的泛化能力域迁移实验(Domain Transfer)任务迁移实验(Task Transfer),如果模型的泛化能力更好,产生的编码表示更具有泛化性,那么在相应的迁移实验里边将会在目标任务中取得更好的效果。

对于域迁移实验(Domain Transfer),我们在一个NLI数据集上Fine-tune模型,之后直接将其在其他不同的NLI数据集上进行测试。下表展现的是在源数据集MNLI跟SNLI(为模拟少样本情况,均降采样到5k)迁移到其他目标数据集上的结果。可以看到,相比Vanilla Fine-tuning,Child-Tuning在目标数据集上都拥有更好的效果,这说明了使用Child-Tuning能够有效提高模型泛化能力,防止在源数据集上过拟合。

2e78822c2899cc1d7ced8b4b0da9bde5.png

类似地我们还进行了任务迁移实验(Task Transfer),即在一个源任务上进行Fine-tune,之后将预训练模型的参数冻结住,并迁移到另一个目标任务上,仅仅Fine-tune与目标任务相关的最顶层的线性分类器。下图展示了在以MRPC为源任务,迁移到CoLA,STS-B,QNLI和QQP任务上的实验结果,Child-Tuning相比Vanilla Fine-tuning在任务迁移实验上同样具有明显的优势,说明模型通过Child-Tuning的方法有效提高了泛化能力。

a921d773f2ab380d701e9cb2593f777a.png

04

小彩蛋:关于Rebuttal

这篇论文一开始的分数是4/4/3.5,经过rebuttal之后总共提高了1.5分,变成了4.5/4.5/4(满分5分)。Reviewer主要关心的点就是本文与相关工作的区分度,比如Adapter[4],以及DIff-Pruning[5]等工作的对比。其实Child-Tuning跟这些工作还是就是有较大不同的,主要体现在:

a) 动机不同:这些工作主要聚焦于微调尽量少的参数而模型效果不会损失太多(所谓的paramter efficient learning),而Child-Tuning主要关注如何更好的提高模型的效果与泛化性能;

b) 方法不同:Adapter引入了额外的参数模块,Diff-pruning则通过L0范数约束参数更新量,而Child-Tuning不需要额外的新模块,只需要在模型内识别确定Child Network即可;

c) 效果不同:Adapter跟Diff-pruning仅仅取得的效果与原模型相当/可比,而Child-Tuning则明显提升了模型在下游任务中的表现。

点评:分别从“动机->方法->结果”这三个方面阐释清楚文章的贡献的这个模板大家可以沿用到reviewer “质疑你文章novelty” 或者 “跟xxx文章很相似” 的评审意见中。

From:罗福莉

    当我们从这三方面做了非常详细的clarify,充分解答了reviewer的最大疑惑之后,reviewer对我们的评价也就相应地提高了。所以,rebuttal的时候抓住reviewer最关心的(而不是回复全部的问题),才更有可能影响reviewer提分哦~ 

ps:文章的最后感谢本文共一的实习生 润昕,看到你的飞速成长,比我自己发了论文还开心!期待以及相信你有更好的未来~

Reference

[1] Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping, Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, Noah Smith.

[2] Ranking the Parameters of Deep Neural Networks Using the Fisher Information, Ming Tu, Visar Berisha, Martin Woolf, Jae-sun Seo, Yu Cao, ICASSP'16.

[3] Overcoming Catastrophic Forgetting in Neural Networks, James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, Raia Hadsell.

[4] Parameter-Efficient Transfer Learning for NLP, Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly, ICML'19.

[5] Parameter-Efficient Transfer Learning with Diff Pruning, Demi Guo, Alexander M. Rush, Yoon Kim, ACL'21.


投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

b785c57650b64775adec236d0419c894.png

记得备注呦

整理不易,还望给个在看!

这篇关于极简单但贼有效的Fine-tuning算法,几行代码最高涨点8%的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238475

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO