本文主要是介绍acwing 853. 有边数限制的最短路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
点的编号为 1∼n。
输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。
数据范围
1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
需要back数组原因:
backup[j]表示每次进入第2重循环的dist数组的备份
为了避免如下的串联情况, 在边数限制为一条的情况下,节点3的距离应该是3,但是由于串联情况,利用本轮更新的节点2更新了节点3的距离,所以现在节点3的距离是2。
正确做法是用上轮节点2更新的距离–无穷大,来更新节点3, 再取最小值,所以节点3离起点的距离是3。
实现代码
for (int i = 0; i < k; i ++ )
{memcpy(backup, dist, sizeof dist);for (int j = 0; j < m ; j ++ ){int a = edges[j].a, b = edges[j].b, w = edges[j].w;dist[b] = min(dist[b], backup[a] + w);}
}
为什么是dist[n]>0x3f3f3f3f/2
, 而不是dist[n]>0x3f3f3f3f
5号节点距离起点的距离是无穷大,利用5号节点更新n号节点距离起点的距离,将得到109−2, 虽然小于109, 但并不存在最短路,(在边数限制在k条的条件下)
bellman-Ford 算法:
#include<iostream>
#include<cstring>using namespace std;const int N = 510, M = 10010;struct Edge {int a;int b;int w;
} e[M];//把每个边保存下来即可
int dist[N];
int back[N];//备份数组防止串联
int n, m, k;//k代表最短路径最多包涵k条边int bellman_ford() {memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 0; i < k; i++) {//k次循环memcpy(back, dist, sizeof dist);for (int j = 0; j < m; j++) {//遍历所有边int a = e[j].a, b = e[j].b, w = e[j].w;dist[b] = min(dist[b], back[a] + w);//使用backup:避免给a更新后立马更新b, 这样b一次性最短路径就多了两条边出来}}return dist[n];
}int main() {scanf("%d%d%d", &n, &m, &k);for (int i = 0; i < m; i++) {int a, b, w;scanf("%d%d%d", &a, &b, &w);e[i] = {a, b, w};}int res = bellman_ford();// if (res == -1) puts("impossible");// else cout << res;if (res > 0x3f3f3f3f / 2) puts("impossible");else cout << res << endl;return 0;
}
这篇关于acwing 853. 有边数限制的最短路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!