0基础学习PyFlink——Map和Reduce函数处理单词统计

2023-10-18 21:20

本文主要是介绍0基础学习PyFlink——Map和Reduce函数处理单词统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在很多讲解大数据的案例中,往往都会以一个单词统计例子来抛砖引玉。本文也不免俗,例子来源于PyFlink的《Table API Tutorial》,我们会通过几种方式统计不同的单词出现的个数,从而达到循序渐进的学习效果。

常规方法

# input.py
word_count_data = ["To be, or not to be,--that is the question:--","Whether 'tis nobler in the mind to suffer","The slings and arrows of outrageous fortune","Or to take arms against a sea of troubles,","And by opposing end them?--To die,--to sleep,--","No more; and by a sleep to say we end","The heartache, and the thousand natural shocks","That flesh is heir to,--'tis a consummation","Devoutly to be wish'd. To die,--to sleep;--","To sleep! perchance to dream:--ay, there's the rub;","For in that sleep of death what dreams may come,","When we have shuffled off this mortal coil,","Must give us pause: there's the respect","That makes calamity of so long life;","For who would bear the whips and scorns of time,","The oppressor's wrong, the proud man's contumely,","The pangs of despis'd love, the law's delay,","The insolence of office, and the spurns","That patient merit of the unworthy takes,","When he himself might his quietus make","With a bare bodkin? who would these fardels bear,","To grunt and sweat under a weary life,","But that the dread of something after death,--","The undiscover'd country, from whose bourn","No traveller returns,--puzzles the will,","And makes us rather bear those ills we have","Than fly to others that we know not of?","Thus conscience does make cowards of us all;","And thus the native hue of resolution","Is sicklied o'er with the pale cast of thought;","And enterprises of great pith and moment,","With this regard, their currents turn awry,","And lose the name of action.--Soft you now!","The fair Ophelia!--Nymph, in thy orisons","Be all my sins remember'd."]

一般的思路我们是:

  1. 遍历这个list将每行用空格切割成独立单词,存储到一个新的list中
  2. 遍历步骤1产生的新的list,使用map记录统计结果,key是单词,value是次数
# common.py
from input import word_count_datawordCount = dict()
for line in word_count_data:wordsOneline = line.split()for word in wordsOneline:wordCount.update({word:wordCount.get(word,0)+1})print(wordCount)

{‘To’: 4, ‘be,’: 1, ‘or’: 1, ‘not’: 2, ‘to’: 7, ‘be,–that’: 1, ‘is’: 2, ‘the’: 15, ‘question:–’: 1, ‘Whether’: 1, “'tis”: 1, ‘nobler’: 1, ‘in’: 3, ‘mind’: 1, ‘suffer’: 1, ‘The’: 7, ‘slings’: 1, ‘and’: 7, ‘arrows’: 1, ‘of’: 14, ‘outrageous’: 1, ‘fortune’: 1, ‘Or’: 1, ‘take’: 1, ‘arms’: 1, ‘against’: 1, ‘a’: 5, ‘sea’: 1, ‘troubles,’: 1, ‘And’: 5, ‘by’: 2, ‘opposing’: 1, ‘end’: 2, ‘them?–To’: 1, ‘die,–to’: 2, ‘sleep,–’: 1, ‘No’: 2, ‘more;’: 1, ‘sleep’: 2, ‘say’: 1, ‘we’: 4, ‘heartache,’: 1, ‘thousand’: 1, ‘natural’: 1, ‘shocks’: 1, ‘That’: 3, ‘flesh’: 1, ‘heir’: 1, “to,–'tis”: 1, ‘consummation’: 1, ‘Devoutly’: 1, ‘be’: 1, “wish’d.”: 1, ‘sleep;–’: 1, ‘sleep!’: 1, ‘perchance’: 1, ‘dream:–ay,’: 1, “there’s”: 2, ‘rub;’: 1, ‘For’: 2, ‘that’: 3, ‘death’: 1, ‘what’: 1, ‘dreams’: 1, ‘may’: 1, ‘come,’: 1, ‘When’: 2, ‘have’: 2, ‘shuffled’: 1, ‘off’: 1, ‘this’: 2, ‘mortal’: 1, ‘coil,’: 1, ‘Must’: 1, ‘give’: 1, ‘us’: 3, ‘pause:’: 1, ‘respect’: 1, ‘makes’: 2, ‘calamity’: 1, ‘so’: 1, ‘long’: 1, ‘life;’: 1, ‘who’: 2, ‘would’: 2, ‘bear’: 2, ‘whips’: 1, ‘scorns’: 1, ‘time,’: 1, “oppressor’s”: 1, ‘wrong,’: 1, ‘proud’: 1, “man’s”: 1, ‘contumely,’: 1, ‘pangs’: 1, “despis’d”: 1, ‘love,’: 1, “law’s”: 1, ‘delay,’: 1, ‘insolence’: 1, ‘office,’: 1, ‘spurns’: 1, ‘patient’: 1, ‘merit’: 1, ‘unworthy’: 1, ‘takes,’: 1, ‘he’: 1, ‘himself’: 1, ‘might’: 1, ‘his’: 1, ‘quietus’: 1, ‘make’: 2, ‘With’: 2, ‘bare’: 1, ‘bodkin?’: 1, ‘these’: 1, ‘fardels’: 1, ‘bear,’: 1, ‘grunt’: 1, ‘sweat’: 1, ‘under’: 1, ‘weary’: 1, ‘life,’: 1, ‘But’: 1, ‘dread’: 1, ‘something’: 1, ‘after’: 1, ‘death,–’: 1, “undiscover’d”: 1, ‘country,’: 1, ‘from’: 1, ‘whose’: 1, ‘bourn’: 1, ‘traveller’: 1, ‘returns,–puzzles’: 1, ‘will,’: 1, ‘rather’: 1, ‘those’: 1, ‘ills’: 1, ‘Than’: 1, ‘fly’: 1, ‘others’: 1, ‘know’: 1, ‘of?’: 1, ‘Thus’: 1, ‘conscience’: 1, ‘does’: 1, ‘cowards’: 1, ‘all;’: 1, ‘thus’: 1, ‘native’: 1, ‘hue’: 1, ‘resolution’: 1, ‘Is’: 1, ‘sicklied’: 1, “o’er”: 1, ‘with’: 1, ‘pale’: 1, ‘cast’: 1, ‘thought;’: 1, ‘enterprises’: 1, ‘great’: 1, ‘pith’: 1, ‘moment,’: 1, ‘regard,’: 1, ‘their’: 1, ‘currents’: 1, ‘turn’: 1, ‘awry,’: 1, ‘lose’: 1, ‘name’: 1, ‘action.–Soft’: 1, ‘you’: 1, ‘now!’: 1, ‘fair’: 1, ‘Ophelia!–Nymph,’: 1, ‘thy’: 1, ‘orisons’: 1, ‘Be’: 1, ‘all’: 1, ‘my’: 1, ‘sins’: 1, “remember’d.”: 1}

上述的代码在一个双层for循环中简单粗暴的解决了问题。如果不给用双层for循环,则需要将其改成两个单层for循环

# common_1.py
from input import word_count_datawords = []
for line in word_count_data:words.extend(line.split())wordCount = {}
for word in words:wordCount.update({word:wordCount.get(word,0)+1})print(wordCount)       

如果不给显示的使用for循环,有什么办法呢?这儿我们就引入map和reduce。

Map

map(func, *iterables) --> map object
Make an iterator that computes the function using arguments from each of the iterables. Stops when the shortest iterable is exhausted.

简单来说,map会对传入的迭代器(第二个参数)执行处理方法(第一个参数),并将该方法的返回结果放入一个结构中,最后我们可以使用map返回的迭代器逐个访问计算结果。
举个例子:

import sys
source=[1,2,3,4,5,6]
iter=map(lambda x: x+1, source)
while True:try:print(next(iter))except StopIteration:sys.exit()

2
3
4
5
6
7

上例中我们给map的处理函数设置为一个匿名函数,它会返回每个遍历数字的自增1的值。
对应到我们单词统计的例子,我们可以使用下面代码,遍历word_count_data每行,然后将其用空格切分出list并返回。这样wordsLists就是“一个元素是一行单词list”的list的迭代器。

from input import word_count_data
wordsLists=map(lambda line: line.split(), word_count_data)

[
[‘To’, ‘be,’, ‘or’, ‘not’, ‘to’, ‘be,–that’, ‘is’, ‘the’, ‘question:–’],
[‘Whether’, “'tis”, ‘nobler’, ‘in’, ‘the’, ‘mind’, ‘to’, ‘suffer’],
……
]

Reduce

functools.reduce(function, iterable[, initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned.

它等价于下面的代码

def reduce(function, iterable, initializer=None):it = iter(iterable)if initializer is None:value = next(it)else:value = initializerfor element in it:value = function(value, element)return value

它和map的相同点是:

  • 都需要提供一个处理函数(第一个参数)
  • 处理函数都有一个返回值

不同点是:

  • 处理函数接受两个参数
  • 接受第三个参数作为初始返回数据

直接看一个例子。下面这个例子中匿名函数中y参数是source的某个遍历值;x最开始是初始值100,后来是匿名函数上次执行的返回值。这样下面的结果就相当于100+1+2+3+4+5+6。

from functools import reduce
source=[1,2,3,4,5,6]
r=reduce(lambda x,y: x+y, source, 100)
print(r)

121

对应到单词统计的例子。reduce方法可以将上面list中套list的结构“简化”为一层list。

words=reduce(lambda wordsAll,wordsOneline: wordsAll+wordsOneline, wordsLists, [])

words的值是

[‘To’, ‘be,’, ‘or’, ‘not’, ‘to’, ‘be,–that’, ‘is’, ‘the’, ‘question:–’, ‘Whether’, ……]

然后对这层list做计算,统计每个单词出现的次数,也“缩小”了words说表达的单词所占的“空间”。

wordCount=reduce(lambda wordCount,word: wordCount.update({word:wordCount.get(word,0)+1}) or wordCount, words, {})

{‘To’: 4, ‘be,’: 1, ‘or’: 1, ‘not’: 2, ‘to’: 7, ‘be,–that’: 1, ‘is’: 2, ‘the’: 15,……]

总体来说,map让输入数据被拆解(映射)到最小数据单元;reduce减少数据规模,并最终产出结果。
在这里插入图片描述

参考资料

  • https://docs.python.org/3.10/library/functools.html?highlight=reduce

这篇关于0基础学习PyFlink——Map和Reduce函数处理单词统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235212

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

浅析Python中如何处理Socket超时

《浅析Python中如何处理Socket超时》在网络编程中,Socket是实现网络通信的基础,本文将深入探讨Python中如何处理Socket超时,并提供完整的代码示例和最佳实践,希望对大家有所帮助... 目录开篇引言核心要点逐一深入讲解每个要点1. 设置Socket超时2. 处理超时异常3. 使用sele

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的